首页> 外文期刊>RSC Advances >Optimizing milling energy for enhancement of solid-state magnesium sulfate (MgSO4) thermal extraction for permanent CO2 storage
【24h】

Optimizing milling energy for enhancement of solid-state magnesium sulfate (MgSO4) thermal extraction for permanent CO2 storage

机译:优化研磨能以增强固态硫酸镁(MgSO4)的热萃取能力,以永久存储CO2

获取原文
获取原文并翻译 | 示例
           

摘要

Mineral carbonation of Mg-silicates via the indirect-dry route is among the most appealing technical approaches for permanent CO2 storage. It brings about the possibility of recycling heat released during exothermic carbonation and it offers a higher rate of conversion through two separate stages: producing of reactive compounds, mainly Mg(OH)(2), through solid reactions between Mg-silicates and ammonium sulfates and subsequent carbonation of reactive compounds. Milling is essential to enhance the solidstate reaction rate and increase the conversion percentage. The milling energy, being the major energy consumption of the entire carbonation process, needs to be minimized without sacrifice of its activation purpose. This study focuses on enhancing the kinetics of solid-state magnesium sulfate (MgSO4) thermal extraction from the solid-solid reaction of olivine ((Fe, Mg)(2)SiO4) and ammonium sulfate ((NH4)(2)SO4), with optimized milling energy input. This process constitutes the first stage of Mg(OH)(2) production for indirect CO2 storage purposes. The mechanical activation of reactants via a high-energy magneto ball milling with a controlled energy input is achieved. The variation of structural parameters such as the particle size, specific surface area (SSA), pore volume, and crystallite size and strain are characterized as a function of milling energy input and the correlation between structural factors and activation energy of extraction is investigated. In addition, the variation in the apparent activation energy of solid-state extraction is examined as a function of milling energy. The optimal amount of milling energy input for increasing the reaction kinetics of MgSO4 extraction is estimated to be about 27.6 kJ g(-1) which causes around 34% reduction in the activation energy of MgSO4 solid-state extraction.
机译:通过间接干法将镁硅酸盐进行矿物碳酸化是永久存储二氧化碳最吸引人的技术方法之一。它带来了回收放热碳酸过程中释放出的热量的可能性,并通过两个单独的阶段提供了更高的转化率:通过硅酸镁和硫酸铵之间的固相反应生成反应性化合物,主要是镁(OH)(2)。随后将反应性化合物碳化。研磨对于提高固态反应速率和提高转化率至关重要。研磨能量是整个碳酸化过程的主要能量消耗,需要在不牺牲其活化目的的情况下使其最小化。这项研究的重点是提高橄榄石((Fe,Mg)(2)SiO4)和硫酸铵((NH4)(2)SO4)的固-固反应的固态硫酸镁(MgSO4)热萃取动力学,优化的铣削能量输入。此过程构成了间接存储CO2的Mg(OH)(2)生产的第一阶段。通过具有受控能量输入的高能磁球磨可以实现反应物的机械活化。表征了结构参数的变化,例如粒度,比表面积(SSA),孔体积,微晶尺寸和应变随研磨能量输入的变化而变化,并研究了结构因素与萃取活化能之间的相关性。另外,检查固态提取的表观活化能的变化与研磨能的关系。输入的用于提高MgSO4萃取反应动力学的最佳研磨能量输入量估计约为27.6 kJ g(-1),这会导致MgSO4固态萃取的活化能降低约34%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号