...
首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Numerical studies of light-matter interaction driven by plasmonic fields: The velocity gauge
【24h】

Numerical studies of light-matter interaction driven by plasmonic fields: The velocity gauge

机译:等离子体场驱动的光-质相互作用的数值研究:速度计

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional theoretical approaches to model strong field phenomena driven by plasmonic fields are based on the length gauge formulation of the laser-matter coupling. Obviously, from the physical point of view, there exists no preferable gauge and, consequently, the predictions and outcomes should be independent of this choice. The use of the length gauge is mainly due to the fact that the quantity obtained from finite-element simulations of plasmonic fields is the plasmonic enhanced laser electric field rather than the laser vector potential. We develop, from first principles, the velocity gauge formulation of the problem and we apply it to the high-order-harmonic generation (HHG) in atoms. A comparison to the results obtained with the length gauge is made. As expected, it is analytically and numerically demonstrated that both gauges give equivalent descriptions of the emitted HHG spectra resulting from the interaction of a spatially inhomogeneous field and the single active electron model of the helium atom. We discuss, however, advantages and disadvantages of using different gauges in terms of numerical efficiency, which turns out to be very different. In order to understand it, we analyze the quantum mechanical results using time-frequency Gabor distributions. This analysis, combined with classical calculations based on solutions of the Newton equation, yields important physical insight into the electronic quantum paths underlying the dynamics of the harmonic generation process. The results obtained in this way also allow us to assess the quality of the quantum approaches in both gauges and put stringent limits on the numerical parameters required for a desired accuracy.
机译:用于模拟由等离激元场驱动的强场现象的常规理论方法是基于激光物质耦合的长度规公式。显然,从物理角度来看,没有更好的衡量标准,因此,预测和结果应独立于该选择。长度计的使用主要是由于以下事实:从等离激元场的有限元模拟获得的数量是等离激元增强的激光电场,而不是激光矢量电势。我们从首要原理出发,开发了问题的速度表公式,并将其应用于原子中的高次谐波生成(HHG)。与长度计获得的结果进行比较。正如预期的那样,通过分析和数值证明,这两个量规均对发射的HHG光谱给出了等效的描述,这些光谱是由空间不均匀场和氦原子的单个活性电子模型相互作用产生的。但是,我们在数值效率方面讨论了使用不同量规的优缺点,事实证明这是非常不同的。为了理解它,我们使用时频Gabor分布分析了量子力学结果。该分析与基于牛顿方程解的经典计算相结合,对谐波产生过程的动力学基础的电子量子路径产生了重要的物理洞察力。以这种方式获得的结果还使我们能够评估两个量规中的量子方法的质量,并对获得所需精度的数值参数施加严格限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号