...
首页> 外文期刊>Physics of plasmas >Electron energy distributions in a magnetized inductively coupled plasma
【24h】

Electron energy distributions in a magnetized inductively coupled plasma

机译:磁化电感耦合等离子体中的电子能量分布

获取原文
获取原文并翻译 | 示例
           

摘要

Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics. (C) 2014 AIP Publishing LLC.
机译:在等离子体材料加工中,优化和控制电子能量分布(EED)是一个持续的目标,因为EED决定了电子撞击过程的速率系数。有许多策略可定制低压感应耦合等离子体(ICP)中的EED,例如脉冲和频率选择,以产生所需的等离子体特性。最近的实验表明,可以通过使用足够大小的静磁场来操纵低压ICP中的EED,以将电子磁化并将其限制在电磁趋肤深度内。然后,EED是局部磁场的函数,而不是在没有磁场的情况下具有非局部特性。在本文中,讨论了在氩气中保持的磁化电感耦合等离子体(mICP)中的EED,以及二维等离子体流体动力学模型的结果。将结果与实验测量结果进行比较。我们发现,通过施加静磁场,EED的特性从非局部转变为局部。交叉场迁移率的降低会增加皮肤深度中的局部电子加热,并减少这些热电子向较大半径的传输。因此,EED的尾巴在皮肤深度上得到增强,并在大半径处凹陷。由于局部动力学和非局部动力学之间的过渡,等离子体密度在压力随着外部磁场而增加的情况下是非单调的。 (C)2014 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号