首页> 外文期刊>The Journal of Chemical Physics >A second-order unconstrained optimization method for canonical-ensemble density-functional methods
【24h】

A second-order unconstrained optimization method for canonical-ensemble density-functional methods

机译:典范集成密度泛函方法的二阶无约束优化方法

获取原文
获取原文并翻译 | 示例
           

摘要

A second order converging method of ensemble optimization (SOEO) in the framework of Kohn-Sham Density-Functional Theory is presented, where the energy is minimized with respect to an ensemble density matrix. It is general in the sense that the number of fractionally occupied orbitals is not predefined, but rather it is optimized by the algorithm. SOEO is a second order Newton-Raphson method of optimization, where both the form of the orbitals and the occupation numbers are optimized simultaneously. To keep the occupation numbers between zero and two, a set of occupation angles is defined, from which the occupation numbers are expressed as trigonometric functions. The total number of electrons is controlled by a built-in second order restriction of the Newton-Raphson equations, which can be deactivated in the case of a grand-canonical ensemble (where the total number of electrons is allowed to change). To test the optimization method, dissociation curves for diatomic carbon are produced using different functionals for the exchange-correlation energy. These curves show that SOEO favors symmetry broken pure-state solutions when using functionals with exact exchange such as Hartree-Fock and Becke three-parameter Lee-Yang-Parr. This is explained by an unphysical contribution to the exact exchange energy from interactions between fractional occupations. For functionals without exact exchange, such as local density approximation or Becke Lee-Yang-Parr, ensemble solutions are favored at interatomic distances larger than the equilibrium distance. Calculations on the chromium dimer are also discussed. They show that SOEO is able to converge to ensemble solutions for systems that are more complicated than diatomic carbon.
机译:提出了在Kohn-Sham密度泛函理论的框架下的集成优化的二阶收敛方法(SOEO),其中相对于集成密度矩阵,能量被最小化。从某种意义上说,一般来说,分数占位的轨道数不是预先定义的,而是由算法优化的。 SOEO是二阶牛顿-拉夫森最优化方法,其中轨道的形式和占有数同时被优化。为了将占用数保持在零到两个之间,定义了一组占用角,从中可以将占用数表示为三角函数。电子的总数由牛顿-拉夫森方程的内置二阶限制控制,在大正则合奏(允许改变电子总数)的情况下,可以禁用该限制。为了测试优化方法,使用不同的交换相关能量函数生成了双原子碳的解离曲线。这些曲线表明,当使用具有精确交换的泛函(例如Hartree-Fock和Becke三参数Lee-Yang-Parr)时,SOEO倾向于对称打破的纯态解。这是由于部分职业之间的相互作用对实际交换能量的非物质贡献所致。对于没有精确交换的功能,例如局部密度近似或Becke Lee-Yang-Parr,在原子间距离大于平衡距离的位置,建议使用整体解。还讨论了铬二聚体的计算。他们表明,SOEO能够收敛到比双原子碳更复杂的系统的整体解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号