首页> 外文期刊>The Journal of Chemical Physics >Single-molecule electronics: Cooling individual vibrational modes by the tunneling current
【24h】

Single-molecule electronics: Cooling individual vibrational modes by the tunneling current

机译:单分子电子器件:通过隧道电流冷却各个振动模式

获取原文
获取原文并翻译 | 示例
           

摘要

Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions. (C) 2016 AIP Publishing LLC.
机译:由单分子组成的电子设备构成了电子组件持续缩小尺寸的最终极限。单分子电子学的关键挑战是控制这些结的温度。原则上,可以通过控制单个振动模式中的加热和冷却效果来提高偏压下单分子结的稳定性,将能量泵送到特定的振动模式中以进行电流感应反应,或者提高非弹性电子隧穿的分辨率。通过抑制吸收和外部耗散过程来控制分子中声子的寿命来进行光谱学分析。在偏置下,电流和分子交换能量,这通常会导致分子发热。然而,相反的过程也是可能的,其中通过隧穿电流从分子中提取能量。设计一种分子“散热器”是非常理想的,在这种散热器中,特定的振动模式会将热量从分子漏斗转移到引线中。甚至可以想象,如果采用正确的分子设计,其他振动模式的振动能量将如何汇入“冷却模式”。先前了解单分子连接处的加热和冷却机理的努力主要与小型模型有关,在这种情况下,尚不清楚它们对应于哪个分子系统。在本文中,我们的重点是在某些振动模式下抑制发热并获得电流感应冷却。提出了冷却单分子结中振动模式的策略,以及基于这些策略的原子计算。在计算原子性单分子结时,观察到两种不同的冷却方案的冷却和热量减少。 (C)2016 AIP出版有限责任公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号