首页> 外文期刊>The Journal of Chemical Physics >The origin of the conductivity maximum in molten salts. II. SnCl2 and HgBr2
【24h】

The origin of the conductivity maximum in molten salts. II. SnCl2 and HgBr2

机译:熔融盐中电导率最大值的起源。二。 SnCl2和HgBr2

获取原文
获取原文并翻译 | 示例
           

摘要

The phenomenon of electrical conductivity maxima of molten salts versus temperature during orthobaric (closed-vessel) conditions is further examined via ab initio simulations. Previously, in a study of molten BiCl3, a new theory was offered in which the conductivity falloff at high temperatures is due not to traditional ion association, but to a rise in the activation energy for atomic ions hopping from counterion to counterion. Here this theory is further tested on two more inorganic melts which exhibit conductivity maxima: another high-conducting melt (SnCl2, s(max) = 2.81 Omega(-1) cm(-1)) and a low-conducting one (HgBr2, sigma max = 4.06 x 10(-4) Omega(-1) cm(-1)). First, ab initio molecular dynamics simulations were performed and again appear successful in reproducing the maxima for both these liquids. Second, analysis of the simulated liquid structure (radial distributions, species concentrations) was performed. In the HgBr2 case, a very molecular liquid like water, a clear Grotthuss chain of bromide transfers was observed in simulation when seeding the system with a HgBr+ cation and HgBr3-anion. The first conclusion is that the hopping mechanism offered for molten BiCl3 is simply the Grotthuss mechanism for conduction, applicable not just to H+ ions, but also to halide ions in post-transition-metal halide melts. Second, it is conjectured that the conductivity maximum is due to rising activation energy in network-covalent (halide-bridging) melts (BiCl3, SnCl2, PbCl2), but possibly a falling Arrhenius prefactor (collision frequency) for molecular melts (HgBr2). Published by AIP Publishing.
机译:通过从头算起进一步研究了在正压(密闭容器)条件下熔融盐的电导率最大值随温度变化的现象。以前,在对熔融BiCl3的研究中,提供了一种新理论,其中高温下的电导率下降不是由于传统的离子缔合引起的,而是由于原子离子从抗衡离子跃迁到抗衡离子而引起的活化能的增加。在此,我们对该理论进行了进一步的测试,它们显示了两种导电性最高的无机熔体:另一种高导电性熔体(SnCl2,s(max)= 2.81 Omega(-1)cm(-1))和低导电性熔体(HgBr2, sigma max = 4.06 x 10(-4)Omega(-1)cm(-1))。首先,进行了从头开始的分子动力学模拟,并再次成功地再现了这两种液体的最大值。其次,对模拟的液体结构(径向分布,物种浓度)进行了分析。在HgBr2的情况下,当用HgBr +阳离子和HgBr3-阴离子注入系统时,在模拟中观察到非常分子的液体(如水),清晰的Grotthuss溴化物转移链。第一个结论是,为熔融BiCl3提供的跳变机制只是Grotthuss的传导机制,不仅适用于H +离子,还适用于过渡金属卤化物熔体中的卤化物离子。其次,推测最大电导率是由于网络共价(卤化物桥)熔体(BiCl3,SnCl2,PbCl2)中活化能的升高,但可能是分子熔体(HgBr2)的阿累尼乌斯因子下降(碰撞频率)。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号