首页> 外文期刊>The Journal of Chemical Physics >Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory
【24h】

Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

机译:角度依赖的强场分子电离率,采用调谐的距离间隔时间依赖密度泛函理论

获取原文
获取原文并翻译 | 示例
           

摘要

Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrodinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals. Published by AIP Publishing.
机译:强电场电离及其产生的电子动力学对于一系列过程非常重要,例如高次谐波产生,光损伤,电荷共振增强的电离和电离触发的电荷迁移。由于波函数的空间范围较大(这会影响基集的准确性)以及需要非扰动时间依赖性电子结构方法的强场,因此从第一性原理对分子系统中的电离动力学建模可能具有挑战性。在本文中,我们开发了一种基于时间的密度泛函理论方法,该方法使用高斯型轨道(GTO)基础集来捕获强场电离速率以及原子和小分子中的动力学。这涉及利用随时间变化的激光电势和空间非赫米特复合体吸收电势在时间上传播电子密度矩阵,该空间非赫密特复合体吸收电势被投影到以原子为中心的基础集上,以从模拟中去除电离电荷。对于密度泛函理论(DFT)泛函,我们使用调谐范围分隔的泛函LC-PBE *,与传统的DFT泛函相比,它具有正确的渐近1 / r势势和减小的离域误差。计算了在各种场频,强度和极化(与角度有关的电离)下氢,分子氮和碘乙炔的电离率,结果表明该结果与时间相关的薛定inger方程和强场近似计算定量地吻合。这种使用GTO方法调谐的DFT为使用调谐距离分隔的杂化功能的分子系统中的电离和电离触发动力学的预测全电子时间依赖性密度泛函理论模拟打开了大门。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号