【24h】

Excluded volume effect for large and small solutes in water

机译:排除水中大小溶质的体积效应

获取原文
获取原文并翻译 | 示例
           

摘要

The cavitation effect, i.e., the process of the creation of a void of excluded volume in bulk solvent (a cavity), is considered. The cavitation free energy is treated in terms of the information theory (IT) approach [Hummer, G.; Garde, S.; Garcia, A. E.; Paulaitis, M. E.; Pratt, L. R. J. Phys. Chem. B 1998, 102, 10469]. The binomial cell model suggested earlier is applied as the IT default distribution p(m), for the number m of solute (water) particles occupying a cavity of given size and shape. In the present work, this model is extended to cover the entire range of cavity size between small ordinary molecular solutes and bulky biomolecular structures. The resulting distribution consists of two binomial peaks responsible for producing the free energy contributions, which are proportional respectively to the volume and to the surface area of a cavity. The surface peak dominates in the large cavity limit, when the two peaks are well separated. The volume effects become decisive in the opposite limit of small cavities, when the two peaks reduce to a single-peak distribution as considered in our earlier work. With a proper interpolation procedure connecting these two regimes, the NIC simulation results for model spherical solutes with radii increasing up to R = 10 angstrom [Huang, D. H.; Geissler, P. L.; Chandler, D. J. Phys. Chem. B 2001, 105, 6704] are well reproduced. The large cavity limit conforms to macroscopic properties of bulk water solvent, such as surface tension, isothermal compressibility and Tolman length. The computations are extended to include nonspherical solutes (hydrocarbons C-1-C-6).
机译:考虑了气穴效应,即在本体溶剂(空腔)中产生排除体积的空隙的过程。空化自由能根据信息论(IT)方法进行处理[Hummer,G .; Garde,S .;加西亚(A. E.); Paulaitis,M. E .; Pratt,L.R. J. Phys。化学B 1998,102,10469]。对于占据给定大小和形状的空腔的溶质(水)粒子的数量m,先前建议的二项式细胞模型被用作IT默认分布p(m)。在目前的工作中,该模型已扩展到涵盖小普通分子溶质和庞大的生物分子结构之间的整个空腔尺寸范围。所得的分布由负责产生自由能贡献的两个二项式峰组成,它们分别与腔体的体积和表面积成比例。当两个峰很好地分开时,表面峰在大腔体界限中占主导地位。如我们早先的工作中所考虑的,当两个峰减小到一个单峰分布时,体积效应在小腔的相反极限中起决定性作用。通过适当的内插程序,将这两种情况联系起来,可以模拟半径为R = 10埃的球形溶质的NIC模拟结果[Huang,D. H .; Geissler,P.L .;钱德勒,D。J.物理学。化学[B 2001,105,6704]进行了很好的复制。大空腔极限符合本体水溶剂的宏观特性,例如表面张力,等温压缩性和托尔曼长度。计算扩展到包括非球形溶质(碳氢化合物C-1-C-6)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号