首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Silicate Glass and Mineral Dissolution: Calculated Reaction Paths and Activation Energies for Hydrolysis of a Q~3 Si by H_3O~+ Using Ab Initio Methods
【24h】

Silicate Glass and Mineral Dissolution: Calculated Reaction Paths and Activation Energies for Hydrolysis of a Q~3 Si by H_3O~+ Using Ab Initio Methods

机译:硅酸盐玻璃和矿物质溶解度:从头算方法计算的H_3O〜+水解Q〜3 Si的反应路径和活化能

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular orbital energy minimizations were performed with the B3LYP/6-31G(d) method on a [((OH)_3SiO)_3SiOH-(H_3O~+) centre dot 4(H_2O)] cluster to follow the reaction path for hydrolysis of an Si-O-Si linkage via proton catalysis in a partially solvated system. The Q~3 molecule was chosen (rather than Q~2 or Q~1) to estimate the maximum activation energy for a fully relaxed cluster representing the surface of an Al-depleted acid-etched alkali feldspar. Water molecules were included in the cluster to investigate the influence of explicit solvation on proton-transfer reactions and on the energy associated with hydroxylating the bridging oxygen atom (O_(br)). Single-point energy calculations were performed with the B3LYP/6-311+G(d,p) method. Proton transfer from the hydronium cation to an O_(br) requires sufficient energy to suggest that the Si-(OH)-Si species will occur only in-trace quantities on a silica surface. Protonation of the O_(br) lengthens the Si-O_(br) bond and allows for the formation of a pentacoordinate Si intermediate (~([5])Si). The energy required to form this species is the dominant component of the activation energy barrier to hydrolysis. After formation of the pentacoordinate intermediate,hydrolysis occurs via breaking the ~([5])Si-(OH)-Si linkage with a minimal activation energy barrier. A concerted mechanism involving stretching of the ~([5])Si-(OH) bond,proton transfer from the Si-(OH_2)~+ back to form H_3O~+,and a reversion of ~([5])Si to tetrahedral coordination was predicted. The activation energy for Q~3Si hydrolysis calculated here was found to be less than that reported for Q~3Si using a constrained cluster in the literature but significantly greater than the measured activation energies for the hydrolysis of Si-O_(br) bonds in silicate minerals. These results suggest that the rate-limiting step in silicate dissolution is not the hydrolysis of Q~3Si-Obr bonds but rather the breakage of Q~2 or Q~1Si-O_(br) bonds.
机译:使用B3LYP / 6-31G(d)方法在[[((OH)_3SiO)_3SiOH-(H_3O〜+)中心点4(H_2O)]簇上进行分子轨道能量最小化,以追踪水解氢的反应路径。在部分溶剂化的系统中通过质子催化进行Si-O-Si连接。选择Q〜3分子(而不是Q〜2或Q〜1)来估计完全弛豫的簇的最大活化能,该簇代表贫铝酸蚀长石的表面。将水分子包括在该簇中,以研究显式溶剂化对质子转移反应以及与桥接氧原子(O_(br))羟基化相关的能量的影响。用B3LYP / 6-311 + G(d,p)方法进行单点能量计算。质子从水合氢阳离子转移到O_(br)需要足够的能量,以表明Si-(OH)-Si物种只会在二氧化硅表面上以痕量出现。 O_(br)的质子化延长了Si-O_(br)键,并允许形成五配位的Si中间体(〜([5])Si)。形成该物质所需的能量是活化能屏障对水解的主要组成部分。在形成五配位中间体之后,通过以最小的活化能垒破坏〜([5])Si-(OH)-Si键来进行水解。协同机制涉及拉伸〜([5])Si-(OH)键,质子从Si-(OH_2)〜+转移回形成H_3O〜+,以及〜([5])Si还原为四面体的协调被预测。使用文献中的约束簇,发现此处计算的Q〜3Si水解活化能小于Q〜3Si报道的活化能,但显着大于测得的硅酸盐中Si-O_(br)键水解的活化能。矿物质。这些结果表明,硅酸盐溶解的限速步骤不是Q〜3Si-Obr键的水解,而是Q〜2或Q〜1Si-O_(br)键的断裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号