...
【24h】

Multiply Enhanced Odd-Order Wave-Mixing Spectroscopy

机译:乘增强奇数波混频光谱

获取原文
获取原文并翻译 | 示例
           

摘要

Extending current coherent multidimensional spectroscopy (CMDS) methods to higher order multiwave mixing requires excitation intensities where dynamic Stark effects become important. This paper examines the dynamic Stark effects that occur in mixed frequency/time domain CMDS methods at high excitation intensities in a model system with an isolated vibrational state. The phase-matching restrictions in CMDS define the excitation beams that interact by nonlinear mixing while the dynamic Stark effects create vibrational ladders of increasingly more energetic overtone and combination band states. The excited quantum states form coherences that reemit the output beams. This paper uses the phase-matching conditions k bout ) k b1 - k b2 + k b2′ and k bout )- k b1 + k b2 + k b2′, where the subscripts denote the excitation frequencies of each excitation pulse and the output pulse. The phase-matching condition constrains each pulse to have an odd number of interactions so the overall mixing process that creates the output coherence must also involve an odd number of interactions. Tuning the excitation frequencies and spectrally resolving the output intensity creates three-dimensional spectra that resolve the individual overtone states. Changing the excitation pulse time delays measures the dynamics of the coherences and populations created by the multiple excitations. The multidimensional spectra probe the highly excited states of a molecular potential energy surface. This paper uses tungsten hexacarbonyl (W(CO)6) as a model for observing how dynamic Stark effects change the multidimensional spectra of a simple system. The simplicity of the W(CO)6 system provides the experimental data required to develop the nonperturbative theoretical methods that will be necessary to model this new approach to CMDS.
机译:将当前的相干多维光谱(CMDS)方法扩展到更高阶的多波混频需要动态强度Stark效应变得重要的激发强度。本文研究了在具有独立振动状态的模型系统中,在高激发强度下,在混合频/时域CMDS方法中发生的动态Stark效应。 CMDS中的相位匹配限制定义了通过非线性混合相互作用的激发光束,而动态的Stark效应产生了越来越高的泛音和组合能带状态的振动阶梯。激发的量子态形成相干,重新发射输出光束。本文使用相位匹配条件k bout)k b1-k b2 + k b2'和k bout)-k b1 + k b2 + k b2',其中下标表示每个激励脉冲和输出脉冲的激励频率。相位匹配条件将每个脉冲约束为具有奇数个相互作用,因此产生输出相干性的整个混合过程也必须包含奇数个相互作用。调整激励频率并以频谱方式解析输出强度会创建三维频谱,以解析各个泛音状态。改变激发脉冲时间延迟可测量由多次激发产生的相干和总体的动力学。多维光谱探测分子势能表面的高激发态。本文使用六羰基钨(W(CO)6)作为模型,观察动态Stark效应如何改变简单系统的多维光谱。 W(CO)6系统的简单性提供了开发非扰动理论方法所需的实验数据,这对于建模这种新的CMDS方法是必要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号