首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Utilization of High Specific Surface Area CuO-CeO2 Catalysts for High Temperature Processes of Hydrogen Production: Steam Re-forming of Ethanol and Methane Dry Re-forming
【24h】

Utilization of High Specific Surface Area CuO-CeO2 Catalysts for High Temperature Processes of Hydrogen Production: Steam Re-forming of Ethanol and Methane Dry Re-forming

机译:高比表面积CuO-CeO2催化剂在制氢高温工艺中的应用:乙醇的蒸汽重整和甲烷的干重整

获取原文
获取原文并翻译 | 示例
           

摘要

CuO-CeO2 mixed oxide catalysts with 10, 15, and 20 mol % CuO content were prepared by the hard template method using KIT-6 silica as a template. The applied synthesis method yields solids with BET surface area in excess of 147 m2/g, highly porous nanocrystalline CeO2 morphology and dispersion of CuO phase between 28 and 40%, corresponding to CuO particle size between 1.3 and 1.9 nm. Increasing the CuO content caused a decrease in dispersion of this phase and a further decrease of surface acid site abundance, determined by NH3 chemisorption/TPD method, but improved the reducibility extent of CeO2 (14.5, 16.1 and 24.5% for CuCe10, CuCe15, and CuCe20 catalyst, respectively) and oxygen mobility of prepared powders. It was discovered during ethanol steam re-forming experiments that increasing CuO content is favorable in terms of ethanol conversion but also causes quicker catalyst deactivation, primarily as a result of sintering and loss of CuO dispersion. Reaction temperatures in excess of 550 °C strongly promoted ethanol dehydratation reaction, leading to a rise in methane production and extensive coking of the catalyst surface. Coking was slower in the case of CuO-CeO2 catalysts with a higher CuO content as a result of lower acid site abundance and more pronounced oxygen mobility. Temperatures in excess of 450 °C are required for any noticeable CO2 and CH4 conversion in methane dry re-forming reaction over CuO-CeO2 materials. The examined materials displayed steady performance during stability tests at a reaction temperature of 650 °C, with catalysts containing 15 and 20 mol % CuO exhibiting the highest activity. Additionally, very low amounts of carbon were deposited on spent catalyst samples.
机译:以KIT-6二氧化硅为模板,通过硬模板法制备CuO含量为10、15和20 mol%的CuO-CeO2混合氧化物催化剂。应用的合成方法产生的固体的BET表面积超过147 m2 / g,具有高度多孔的纳米晶CeO2形态,CuO相的分散度在28%至40%之间,对应于CuO粒径在1.3至1.9 nm之间。通过NH3化学吸附/ TPD方法确定,增加CuO含量会导致该相的分散性降低,并进一步降低表面酸位点丰度,但提高了CeO2的还原度(CuCe10,CuCe15和CuCe10的还原度分别为14.5、16.1和24.5%)。制备的粉末的CuCe20催化剂)和氧迁移率。在乙醇蒸汽重整实验期间发现,增加CuO含量有利于乙醇转化,但也主要是由于烧结和CuO分散体损失而导致催化剂失活更快。超过550℃的反应温度强烈地促进了乙醇的脱水反应,导致甲烷产量的增加和催化剂表面的广泛焦化。 CuO含量较高的CuO-CeO2催化剂的结焦速度较慢,这是由于较低的酸性位点丰度和更明显的氧迁移率所致。在CuO-CeO2材料上进行甲烷干重整反应中,任何明显的CO2和CH4转化都需要超过450°C的温度。所检查的材料在650°C的反应温度下的稳定性测试过程中显示出稳定的性能,其中含15和20 mol%CuO的催化剂表现出最高的活性。另外,极少量的碳沉积在废催化剂样品上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号