首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Chemical Kinetic Influences of Alkyl Chain Structure on the High Pressure and Temperature Oxidation of a Representative Unsaturated Biodiesel: Methyl Nonenoate
【24h】

Chemical Kinetic Influences of Alkyl Chain Structure on the High Pressure and Temperature Oxidation of a Representative Unsaturated Biodiesel: Methyl Nonenoate

机译:烷基链结构对代表性不饱和生物柴油:壬酸甲酯的高压和高温氧化的化学动力学影响

获取原文
获取原文并翻译 | 示例
           

摘要

The high pressure and temperature oxidation of methyl trans-2-nonenoate, methyl trans-3-nonenoate, 1-octene, and trans-2-octene are investigated experimentally to probe the influence of the double bond position on the chemical kinetics of long esters and alkenes. Single pulse shock tube experiments are performed in the ranges p = 3.8-6.2 MPa and T = 850-1500 K, with an average reaction time of 2 ms. Gas chromatographic measurements indicate increased reactivity for trans-2-octene compared to 1-octene, whereas both methyl nonenoate isomers have reactivities similar to that of 1-octene. A difference in the yield of stable intermediates is observed for the octenes when compared to the methyl nonenoates. Chemical kinetic models are developed with the aid of the Reaction Mechanism Generator to interpret the experimental results. The models are created using two different base chemistry submodels to investigate the influence of the foundational chemistry (i.e., C0-C4), whereas Monte Carlo simulations are performed to examine the quality of agreement with the experimental results. Significant uncertainties are found in the chemistry of unsaturated esters with the double bonds located close to the ester groups. This work highlights the importance of the foundational chemistry in predictive chemical kinetics of biodiesel combustion at engine relevant conditions.
机译:实验研究了反式-2-壬烯酸甲酯,反式3-壬烯酸甲酯,1-辛烯和反式-2-辛烯的高压和高温氧化过程,以探讨双键位置对长酯化学动力学的影响和烯烃。单脉冲激波管实验在p = 3.8-6.2 MPa和T = 850-1500 K的范围内进行,平均反应时间为2 ms。气相色谱测量表明,与1-辛烯相比,反式-2-辛烯的反应性增加,而两种壬烯酸甲酯异构体的反应性均与1-辛烯的反应性相似。与辛烯酸甲酯相比,发现辛烯的稳定中间体的收率有所不同。在反应机理发生器的帮助下开发了化学动力学模型以解释实验结果。使用两个不同的基础化学子模型创建模型以研究基础化学(即C0-C4)的影响,而执行Monte Carlo模拟以检验与实验结果的一致性。在具有靠近酯基团的双键的不饱和酯的化学性质中发现了很大的不确定性。这项工作突出了基础化学在发动机相关条件下对生物柴油燃烧的预测化学动力学的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号