...
【24h】

Multiscale Modeling of the Nanomechanics of Microtubule Protofilaments

机译:微管原丝纳米力学的多尺度建模

获取原文
获取原文并翻译 | 示例
           

摘要

Large-size biomolecular systems that spontaneously assemble, disassemble, and self-repair by controlled inputs play fundamental roles in biology. Microtubules (MTs), which play important roles in cell adhesion and cell division, are a prime example. MTs serve as "tracks" for molecular motors, and their biomechanical functions depend on dynamic instability—a stochastic switching between periods of rapid growing and shrinking. This process is controlled by many cellular factors so that growth and shrinkage periods are correlated with the life cycle of a cell. Resolving the molecular basis for the action of these factors is of paramount importance for understanding the diverse functions of MTs. We employed a multiscale modeling approach to study the force-induced MT depolymerization by analyzing the mechanical response of a MT protofilament to external forces. We carried out self-organized polymer (SOP) model based simulations accelerated on Graphics Processing Units (GPUs). This approach enabled us to follow the mechanical behavior of the molecule on experimental time scales using experimental force loads. We resolved the structural details and determined the physical parameters that characterize the stretching and bending modes of motion of a MT protofilament. The central result is that the severing action of proteins, such as katanin and kinesin, can be understood in terms of their mechanical coupling to a protofilament. For example, the extraction of tubulin dimers from MT caps by katanin can be achieved by pushing the protofilament toward the axis of the MT cylinder, while the removal of large protofilaments curved into "ram's horn" structures by kinesin is the result of the outward bending of the protofilament. We showed that, at the molecular level, these types of deformations are due to the anisotropic, but homogeneous, micromechanical properties of MT protofilaments.
机译:通过受控输入自发组装,分解和自我修复的大型生物分子系统在生物学中起着基本作用。在细胞粘附和细胞分裂中起重要作用的微管(MTs)是一个很好的例子。 MT充当分子马达的“轨道”,它们的生物力学功能取决于动态的不稳定性-动态变量在快速增长和收缩之间的随机切换。该过程受许多细胞因子的控制,因此生长和收缩期与细胞的生命周期相关。解析这些因素作用的分子基础对于理解MT的多种功能至关重要。我们通过分析MT原型丝对外力的机械响应,采用了多尺度建模方法来研究力引起的MT解聚。我们在图形处理单元(GPU)上加速了基于自组织聚合物(SOP)模型的仿真。这种方法使我们能够使用实验力负荷在实验时间尺度上追踪分子的机械行为。我们解决了结构细节并确定了表征MT原型丝的拉伸和弯曲运动模式的物理参数。中心结果是,就其与原丝的机械偶联而言,可以理解蛋白质如katanin和驱动蛋白的切断作用。例如,通过将原丝推向MT圆柱体的轴线,可以通过katanin从MT帽中提取微管蛋白二聚体,而通过驱动蛋白去除弯曲成“公羊角”结构的大型原丝是向外弯曲的结果原丝的。我们表明,在分子水平上,这些类型的形变是由于MT原生丝的各向异性但均一的微机械特性引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号