...
【24h】

To Be or Not to Be in a Cavity: The Hydrated Electron Dilemma

机译:在腔中或不在腔中:水合电子难题

获取原文
获取原文并翻译 | 示例
           

摘要

The hydrated electron—the species that results from the addition of a single excess electron to liquid water—has been the focus of much interest both because of its role in radiation chemistry and other chemical reactions, and because it provides for a deceptively simple system that can serve as a means to confront the predictions of quantum molecular dynamics simulations with experiment. Despite all this interest, there is still considerable debate over the molecular structure of the hydrated electron: does it occupy a cavity, have a significant number of interior water molecules, or have a structure somewhere in between? The reason for all this debate is that different computer simulations have produced each of these different structures, yet the predicted properties for these different structures are still in reasonable agreement with experiment. In this Feature Article, we explore the reasons underlying why different structures are produced when different pseudopotentials are used in quantum simulations of the hydrated electron. We also show that essentially all the different models for the hydrated electron, including those from fully ab initio calculations, have relatively little direct overlap of the electron's wave function with the nearby water molecules. Thus, a non-cavity hydrated electron is better thought of as an "inverse plum pudding" model, with interior waters that locally expel the surrounding electron's charge density. Finally, we also explore the agreement between different hydrated electron models and certain key experiments, such as resonance Raman spectroscopy and the temperature dependence and degree of homogeneous broadening of the optical absorption spectrum, in order to distinguish between the different simulated structures. Taken together, we conclude that the hydrated electron likely has a significant number of interior water molecules.
机译:水合电子是由单个过量电子加到液态水中而形成的,由于它在辐射化学和其他化学反应中的作用,而且因为它提供了一种看似简单的系统,因此引起了人们的广泛关注。可以作为与实验对抗量子分子动力学模拟的预测的一种手段。尽管有所有这些兴趣,但有关水合电子的分子结构仍存在大量争议:它是否占据空腔,是否具有大量内部水分子或结构介于两者之间?所有这些争论的原因是,不同的计算机模拟产生了这些不同的结构,但是这些不同结构的预测属性仍与实验合理吻合。在这篇专题文章中,我们探讨了在水合电子的量子模拟中使用不同的假电位时产生不同结构的根本原因。我们还表明,基本上所有水合电子的不同模型,包括完全从头算起的模型,都几乎没有电子波函数与附近水分子的直接重叠。因此,非空穴水合电子最好被认为是“反梅布丁”模型,其内部水会局部排出周围电子的电荷密度。最后,我们还探讨了不同水合电子模型与某些关键实验之间的一致性,例如共振拉曼光谱和温度依赖性以及光吸收光谱的均匀展宽程度,以区分不同的模拟结构。综上所述,我们得出的结论是,水合电子可能具有大量内部水分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号