...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >The Role of Multifilament Structures and Lateral Interactions in Dynamics of Cytoskeleton Proteins and Assemblies
【24h】

The Role of Multifilament Structures and Lateral Interactions in Dynamics of Cytoskeleton Proteins and Assemblies

机译:多丝结构和横向相互作用在细胞骨架蛋白和组装动力学中的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

Microtubules and actin filaments are biopolymer molecules that are major components of cytoskeleton networks in biological cells. They play important roles in supporting fundamental cellular processes such as cell division, signaling, locomotion, and intracellular transport. In cells, cytoskeleton proteins function under nonequilibrium conditions that are powered by hydrolysis of adenosine triphosphate (ATP) or guanosine triphosphate (GTP) molecules attached to them. Although these biopolymers are critically important for all cellular processes, the mechanisms that govern their complex dynamics and force generation remain not well explained. One of the most difficult fundamental issues is to understand how different components of cytoskeleton proteins interact together. We develop an approximate theoretical approach for analyzing complex processes in cytoskeleton proteins that takes into account the multifilament structure, lateral interactions between parallel protofilaments, and the most relevant biochemical transitions during the biopolymer growth. It allows us to fully evaluate collective dynamic properties of cytoskeleton filaments as well as the effect of external forces on them. It is found that for the case of strong lateral interactions the stall force of the multifilament protein is a linear function of the number of protofilaments. However, for weak lateral interactions, deviations from the linearity are observed. We also show that stall forces, mean velocities, and dispersions are increasing functions of the lateral interactions. Physical-chemical explanations of these phenomena are presented. Our theoretical predictions are supported by extensive Monte Carlo computer simulations.
机译:微管和肌动蛋白丝是生物聚合物分子,是生物细胞中细胞骨架网络的主要组成部分。它们在支持基本的细胞过程中发挥重要作用,例如细胞分裂,信号传导,运动和细胞内转运。在细胞中,细胞骨架蛋白在非平衡条件下发挥功能,该条件由附着于其上的三磷酸腺苷(ATP)或鸟苷三磷酸(GTP)分子水解提供动力。尽管这些生物聚合物对于所有细胞过程都至关重要,但控制其复杂动力学和产生力的机制仍未得到很好的解释。最困难的基本问题之一是了解细胞骨架蛋白的不同组成部分如何相互作用。我们开发了一种近似的理论方法来分析细胞骨架蛋白中的复杂过程,其中考虑到了复丝结构,平行原丝之间的横向相互作用以及生物聚合物生长过程中最相关的生化转变。它使我们能够全面评估细胞骨架细丝的集体动态特性以及外力对其的影响。发现对于强烈的侧向相互作用的情况,复丝蛋白的失速力是原丝数目的线性函数。但是,对于较弱的横向相互作用,会观察到线性偏差。我们还表明,失速力,平均速度和分散度正在增加横向相互作用的功能。这些现象的物理化学解释。我们的理论预测得到广泛的蒙特卡洛计算机仿真的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号