...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries
【24h】

Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries

机译:FeF3纳米晶体作为锂离子电池高容量阴极活性材料的可逆三电子氧化还原行为

获取原文
获取原文并翻译 | 示例
           

摘要

Three types of FeF3 nanocrystals were synthesized by different chemical routes and investigated as a cathode-active material for rechargeable lithium batteries. XRD and TEM analyses revealed that the as-synthesized FeF3 samples have a pure ReCvtype structure with a uniformly distributed crystallite size of ~10 to 20 nm. Charge-discharge experiments in combination with cyclic voltammetric and XRD evidence demonstrated that the FeF3 in the nanocomposite electrode can realize a reversible electrochemical conversion reaction from Fe~(3+) to Fe~0 and vice versa, enabling a complete utilization of its three-electron redox capacity (~712 mAh·g~(-1)). Particularly, the FeF3/C nanocomposites can be well cycled at very high rates of 1000-2000 mA·g~(-1), giving a considerably high capacity of ~500 mAh·g~(-1). These results seem to indicate that the electrochemical conversion reaction can not only give a high capacity but also proceed reversibly and rapidly at room temperature as long as the electroactive FeF3 particles are sufficiently downsized, electrically wired, and well-protected from aggregation. The high-rate capability of the FeF3/C nanocomposite also suggests its potential applications for high-capacity rechargeable lithium batteries.
机译:通过不同的化学路线合成了三种类型的FeF3纳米晶体,并将其用作可再充电锂电池的正极活性材料。 XRD和TEM分析表明,合成后的FeF3样品具有纯ReCvtype结构,晶粒尺寸均匀分布约10至20 nm。结合循环伏安法和XRD进行的充放电实验表明,纳米复合电极中的FeF3可以实现从Fe〜(3+)到Fe〜0的可逆电化学转化反应,反之亦然,从而可以完全利用其三价电子氧化还原容量(〜712 mAh·g〜(-1))。尤其是,FeF3 / C纳米复合材料可以在1000-2000 mA·g〜(-1)的极高速率下很好地循环,从而提供约500 mAh·g〜(-1)的高容量。这些结果似乎表明,只要将电活性FeF 3颗粒充分减小尺寸,电连接并良好地防止聚集,电化学转化反应不仅可以提供高容量,而且在室温下可逆且迅速地进行。 FeF3 / C纳米复合材料的高倍率性能也表明其在高容量可充电锂电池中的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号