...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Manganese in Graphite Anode and Capacity Fade in Li ion Batteries
【24h】

Manganese in Graphite Anode and Capacity Fade in Li ion Batteries

机译:石墨阳极中的锰与锂离子电池的容量衰减

获取原文
获取原文并翻译 | 示例
           

摘要

Improving the stability of Li ion electricity storage devices is important for practical applications, including the design of rechargeable automotive batteries. Many promising designs for such batteries involve positive electrodes that are complex oxides of transition metals, including manganese. Deposition of this Mn on the graphite negative electrode is known to correlate with gradual capacity fade [by increasing retention of lithium cations in the solid electrolyte interphase (SEI)] in Li ion batteries. This SEI contains partially reduced and fully mineralized electrolyte, in the outer (organic) and inner (mineral) layers. In this study, we explore structural aspects of this Mn deposition via a combination of electrochemical, X-ray absorption, and electron paramagnetic resonance experiments. We confirm previous observations that suggest that on a delithiated graphite electrode Mn is present as Mn~(2+) ion. We show that these Mn~(2+) ions are dispersed: there are no Mn-containing phases, such as MnF2, MnO, or MnCO3. These isolated Mn~(2+) ions reside at the surface of lithium carbonate crystallites in the inner SEI layer. For a lithiated graphite electrode, there is reduction of these. Mn~(2+) ions to an unidentified species different from atomic, nanometer scale or mesoscale Mn(0) clusters. We suggest that Mn~(2+) ions are transported from the positive electrode to the graphite electrode as complexes in which the cation is chelated by carboxylate groups that are products of electrolytic breakdown of the carbonate solvent. This complex is sufficiently strongly bound to avoid cation exchange in the outer SEI and thereby reaches the inner (mineral) layer, where the Mn~(2+) ion is chemisorbed at the surface of the carbonate crystallites. We conjecture that stronger chelation can prevent deposition of Mn~(2+) ions and in this way retard capacity fade. This action might account for the protective properties of certain battery additives.
机译:对于实际应用,包括可充电汽车电池的设计,提高锂离子蓄电装置的稳定性很重要。这种电池的许多有希望的设计都涉及正电极,该正电极是包括锰在内的过渡金属的复合氧化物。已知在锂离子电池中该Mn在石墨负极上的沉积与逐渐的容量衰减(通过增加锂阳离子在固体电解质界面(SEI)中的保留)有关。该SEI在外层(有机层)和内层(​​矿物层)中包含部分还原且完全矿化的电解质。在这项研究中,我们通过电化学,X射线吸收和电子顺磁共振实验的组合,探索了这种锰沉积的结构方面。我们证实了先前的观察结果,表明在去锂化石墨电极上,Mn以Mn〜(2+)离子的形式存在。我们表明这些Mn〜(2+)离子是分散的:没有含Mn的相,例如MnF2,MnO或MnCO3。这些孤立的Mn〜(2+)离子位于内部SEI层中的碳酸锂微晶表面。对于锂化石墨电极,可以减少这些。 Mn〜(2+)离子形成了与原子,纳米尺度或中尺度的Mn(0)簇不同的未知物种。我们建议将Mn〜(2+)离子作为复合物从正电极传输到石墨电极,其中阳离子被碳酸盐溶剂电解分解的羧酸盐基团螯合。该络合物被充分牢固地结合以避免在外部SEI中发生阳离子交换,从而到达内部(矿物)层,在此处Mn〜(2+)离子被化学吸附在碳酸盐微晶的表面。我们推测更强的螯合可以阻止Mn〜(2+)离子的沉积,从而阻止容量衰减。此操作可能说明某些电池添加剂的保护性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号