...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Structure Formation and Thermal Stability of Mono- and Multilayers of Ethylene Carbonate on Cu(111): A Model Study of the ElectrodelElectrolyte Interface
【24h】

Structure Formation and Thermal Stability of Mono- and Multilayers of Ethylene Carbonate on Cu(111): A Model Study of the ElectrodelElectrolyte Interface

机译:Cu(111)上碳酸亚乙酯单层和多层的结构形成和热稳定性:Electrodel电解质界面的模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we aim at a molecular scale understanding of the interactions and structure formation at the electrode|electrolyte interface (EEI) in Li-ion batteries. Therefore, the interaction of the key electrolyte component ethylene carbonate (EC) with Cu(111) was investigated under ultrahigh vacuum conditions. Scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIRS), and dispersion-corrected density functional theory (DFT-D) calculations were employed. After vapor deposition of EC (sub-) monolayers on Cu(111) at 80 K, STM measurements (100 K) reveal a well-ordered commensurate superstructure, in which EC molecules assume different configurations and whose total adsorption energy is mainly governed by van der Waals interactions, as demonstrated by DFT-D. In the temperature range between 150-220 K, competing desorption and decomposition into -C = O, -C-O-C-, -C-H, and -C-C- compounds, as derived by XPS and confirmed by FTIRS, result in distinct changes of the adlayer composition. Similar heating of an EC multilayer film from 80 K to room temperature results in a surface that is almost completely covered with adsorbed, carbon-containing decomposition products. This can be interpreted as the initial stage of chemical EEI formation, and the relevance of these results for battery applications is discussed.
机译:在这项工作中,我们的目标是从分子规模上了解锂离子电池中电极界面(EEI)的相互作用和结构形成。因此,在超高真空条件下研究了关键电解质组分碳酸亚乙酯(EC)与Cu(111)的相互作用。使用扫描隧道显微镜(STM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIRS)和色散校正密度泛函理论(DFT-D)计算。在80 K下在Cu(111)上气相沉积EC(亚)单层后,STM测量(100 K)揭示了有序的相称的上层结构,其中EC分子呈现不同的构型,并且其总吸附能主要由van控制DFT-D证明了der Waals相互作用。在150-220 K的温度范围内,由XPS衍生并由FTIRS证实,竞争解吸和分解成-C = O,-COC-,-CH和-CC-化合物会导致吸附层组成发生明显变化。将EC多层膜从80 K加热到室温的类似方法会导致表面几乎完全被吸附的含碳分解产物覆盖。这可以解释为化学EEI形成的初始阶段,并讨论了这些结果与电池应用的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号