...
首页> 外文期刊>Current Biology: CB >Developmental Control of Late Replication and S Phase Length
【24h】

Developmental Control of Late Replication and S Phase Length

机译:后期复制和S相长度的发展控制

获取原文
获取原文并翻译 | 示例
           

摘要

Background: Fast, early embryonic cell cycles have correspondingly fast S phases. In early Drosophila embryos, forks starting from closely spaced origins replicate the whole genome in 3.4 min, ten times faster than in embryonic cycle 14 and a hundred times faster than in a wing disc. It is not known how S phase duration is regulated. Here we examined prolongation of embryonic S phases, its coupling to development, and its relationship to the appearance of heterochromatin.Results: Imaging of fluorescent nucleotide incorporation and GFP-PCNA gave exquisite time resolution of S phase events. In the early S phases, satellite sequences replicated rapidly despite a compact chromatin structure. In S phases 11-13, a delay in satellite replication emerged in sync with modest and progressive prolongation of S phase. In S phase 14, major and distinct delays ordered the replication of satellites into a sequence that occupied much of S phase. This onset of late replication required transcription. Satellites only accumulated abundant heterochromatin protein 1 (HP1) after replicating in S phase 14. By cycle 15, satellites clustered in a compact HP1-positive mass, but replication occurred at decondensed foci at the surface of this mass.Conclusions: The slowing of S phase is an active process, not a titration of maternal replication machinery. Most sequences continue to replicate rapidly in successive cycles, but increasing delays in the replication of satellite sequences extend S phase. Although called constitutively heterochromatic, satellites acquire the distinctive features of heterochromatin, compaction, late replication, HP1 binding, and aggregation at the chromocenter, in successive steps coordinated with developmental progress.
机译:背景:快速,早期的胚胎细胞周期具有相应的快速S期。在早期的果蝇胚胎中,从紧密间隔的起源开始的叉子在3.4分钟内复制了整个基因组,比胚胎周期14快十倍,比翅片快一百倍。尚不知道如何调节S相持续时间。在这里,我们检查了胚胎S期的延长,其与发育的耦合以及与异染色质外观的关系。结果:荧光核苷酸掺入和GFP-PCNA的成像提供了S期事件的精确时间分辨率。在早期的S阶段,尽管染色质结构紧凑,但卫星序列却迅速复制。在S期11-13,卫星复制的延迟与S期的适度和逐步延长同步出现。在S期14中,主要和明显的延迟命令将卫星复制到一个占用S期大部分时间的序列中。晚期复制的这种发作需要转录。卫星在S期14中复制后仅积累了丰富的异染色质蛋白1(HP1)。到第15个周期,卫星聚集在一个紧凑的HP1阳性团块中,但复制发生在该团块表面的缩合焦点上。结论:S的减慢阶段是一个活跃的过程,而不是滴定母体复制机制。大多数序列在连续的周期中继续快速复制,但是卫星序列复制中不断增加的延迟延长了S期。尽管称为组成性异色,但卫星在与开发进度相协调的连续步骤中具有异染色质,紧实,后期复制,HP1结合和在色中心聚集的独特特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号