首页> 外文期刊>Journal of Applied Polymer Science >Development of antimicrobial stainless steel via surface modification with N-halamines: Characterization of surface chemistry and N-halamine chlorination
【24h】

Development of antimicrobial stainless steel via surface modification with N-halamines: Characterization of surface chemistry and N-halamine chlorination

机译:通过用N-卤胺进行表面改性来开发抗菌不锈钢:表面化学和N-卤胺氯化的表征

获取原文
获取原文并翻译 | 示例
           

摘要

N-halamine modification of materials enables the development of antimicrobial materials whose activity can be regenerated after exposure to halogenated sanitizers. Surface and bulk modification of polymers by N-halamines has shown great success, however, modification of inorganic substrates (e.g., stainless steel) remains an area of research need. Herein, we report the covalent surface modification of stainless steel to possess rechargeably antimicrobial N-halamine moieties. Multilayers of branched polyethyleneimine and poly(acrylic acid) were immobilized onto the surface of stainless steel and the number of N-halamines available to complex chlorine was quantified. Samples were characterized through contact angle, Fourier transform infrared spectroscopy, ellipsometry, dye assay for amine quantification, and X-ray photoelectron spectroscopy. Increasing the number of multilayers from one to six increased the number of N-halamines available to complex chlorine from 0.30 ± 0.5 to 36.81 ± 5.0 nmol cm ~(-2). XPS and FTIR confirmed successful covalent layer-by-layer deposition of the N-halamine multilayers. The reported layer-by-layer deposition technique resulted in a greater than seven-fold increase of available N-halamine compared to prior reports of N-halamine surface modifications. The N-halamine modified steel demonstrated antimicrobial activity (99.7% reduction) against the pathogen Listeria monocytogenes. Such surface modified stainless steel with increased N-halamine functionality, and therefore potential for rechargeable antimicrobial activity, supports efforts to reduce cross-contamination by pathogenic organisms in the food and biomedical industries.
机译:对材料进行N-卤胺改性可开发出抗菌材料,其活性可在暴露于卤化消毒剂后恢复。 N-卤胺对聚合物的表面和本体改性已显示出巨大的成功,但是,无机基质(例如,不锈钢)的改性仍然是研究领域。在此,我们报告了不锈钢的共价表面改性,使其具有可充电的抗菌性N-卤胺部分。将多层支链聚乙烯亚胺和聚丙烯酸固定在不锈钢表面上,并定量可用于络合氯的N-卤胺数量。通过接触角,傅立叶变换红外光谱,椭圆偏振,用于胺定量的染料分析和X射线光电子能谱对样品进行表征。将多层的数量从一增加到六个,可用于络合氯的N-卤胺的数量从0.30±0.5增加到36.81±5.0 nmol cm〜(-2)。 XPS和FTIR证实了N-卤胺多层的成功共价逐层沉积。与先前报道的N-卤胺表面改性相比,报道的逐层沉积技术导致可用的N-卤胺增加了七倍以上。 N-卤胺改性钢对单核细胞增生李斯特氏菌具有抗微生物活性(降低了99.7%)。具有增加的N-卤胺官能度并因此具有可再充电的抗菌活性的潜力的这种表面改性的不锈钢支持减少食品和生物医学工业中病原性生物的交叉污染的努力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号