...
【24h】

Magnetite biomineralization in ferruginous waters and early Earth evolution

机译:铁素水域和早期地球进化中的磁铁矿生物碳化

获取原文
获取原文并翻译 | 示例
           

摘要

Burial of large quantities of magnetite (Fe(II)Fe(III)(2)O-4) in iron formations (IFs) likely contributed to the protracted oxidation of Earth's surface during the Precambrian Eons. Magnetite can form through a diversity of biological and abiotic pathways and its preservation in IFs may thus be variably interpreted as the result of some combination of these processes. Such interpretations give rise to divergent pictures of the Precambrian Earth system and models for its evolution through time. New knowledge on the contribution of specific magnetite formation pathways is, therefore, needed to accurately tether our conceptual and numerical models to the geologic record. To constrain pathways of magnetite formation under ferruginous conditions, we conducted geochemical and multi-method microspectroscopic analyses on particles obtained from the water columns and sediments of ferruginous lakes Matano and Towuti, in Indonesia. We find that biologically reactive Fe(III) mineral phases are reduced in the anoxic waters of both lakes, causing the formation of primary authigenic magnetite, directly in the water column. This water column magnetite often takes conspicuous framboidal forms, which given the link to microbial Fe(III) reduction, may provide a biological signature on early Earth and by extension, other planetary bodies. The consumption of more biologically reactive forms of Fe(III) and the resulting delivery of primary magnetite to underlying sediments promotes the burial of oxidized equivalents and implies that primary magnetite formation could have been a principal pathway of Fe delivery to IFs. Combined, the removal of Fe from Earth's surface through biologically induced magnetite formation and subsequent burial in IFs, suggests that seawater chemistry and the microbially mediated reactions that cause magnetite formation played key roles in Earth system evolution and in setting the pace for planetary oxidation through the Precambrian Eons. (C) 2020 Published by Elsevier B.V.
机译:在铁形成(IFS)中大量磁铁矿(Fe(II)Fe(III)(2)O-4)的埋葬可能导致Predambrian EONS期间地球表面的长度氧化。磁铁矿可以通过生物和非生物途径的多样性形成,因此如果这些过程的某种组合的结果,则可以可变地解释其IFS中的保存。这种解释引发了先兆地球系统的发散图片和通过时间的演变的模型。因此,对特定磁铁矿形成途径的贡献的新知识是需要准确地将我们的概念和数值模型准确地系在地质记录中。为了在铁毛细管条件下约束磁铁矿形成的途径,我们在印度尼西亚的水柱和铁杆菌和Towuti的水柱和沉积物上进行了地球化学和多方法微光谱分析。我们发现,在两个湖泊的缺氧水中,生物反应性Fe(III)矿物相减少,导致直接在水柱中形成初级作用磁铁矿。这种水柱磁铁矿通常采用显着的框架形式,这给予微生物Fe(iii)减少的链接,可以在早期地球和其他行星体内提供生物签名。施用更加生物反应性的Fe(III)和所得初级磁铁矿的消耗促进沉积物促进氧化等同物的墓葬,并意味着初级磁铁矿形成可能是Fe递送的主要途径。结合,通过生物诱导的磁铁矿形成从地球表面的去除和在IFS中的埋葬,引起磁铁矿形成的微生物化学和微生物介导的反应在地球系统演变中发挥了关键作用,并通过了行星氧化的速度前锋eons。 (c)2020由elsevier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号