...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Carbon ordering in an aseismic shear zone: Implications for Raman geothermometry and strain tracking
【24h】

Carbon ordering in an aseismic shear zone: Implications for Raman geothermometry and strain tracking

机译:ASEISMIC剪切区中的碳排序:拉曼地热测定和应变跟踪的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Determining the burial and strain history of sedimentary rocks is important for understanding crustal behaviour. When rocks contain organic carbon, increased temperatures at depth can alter the molecular structure of the carbon. This change, known as carbon ordering, can be detected using Raman spectroscopy. As a result, Raman spectroscopy is increasingly used to estimate burial depths and associated maximum temperatures in carbon-bearing rocks. It is known from experiments and natural samples that other factors can affect Raman-derived maximum temperatures, including frictional heating on fault planes and interaction with hot fluids. For faulted samples, a question remains as to whether it is purely frictional heating that causes carbon ordering or strain, or a combination of the two. In this study, we use a mid-crustal shear zone to show that strain-related carbon ordering occurs in natural rock samples during aseismic shear strain. A traverse across the shear zone, whose relative strain we quantify with respect to the surrounding less deformed rock, shows a marked decrease in Raman D/G peak intensity ratios indicating greater carbon ordering within the shear zone. We interpret this as evidence for carbon ordering as a result of aseismic shear strain, rather than inflated temperatures, due to frictional heating commonly associated with seismic strain rates on faults. Our results have implications for the further development of Raman spectroscopy as a geothermometer (which may yield erroneous results in strained rock samples) and for understanding strain localisation processes in the Earth's crust, and its associated rheological implications. (C) 2020 Published by Elsevier B.V.
机译:确定沉积岩的埋葬和应变历史对理解地壳行为很重要。当岩石含有有机碳时,深度的温度提高可以改变碳的分子结构。可以使用拉曼光谱检测称为碳排序的这种变化。结果,拉曼光谱越来越多地用于估计碳岩中的埋藏深度和相关的最大温度。从实验和天然样品中已知其他因素可以影响拉曼衍生的最大温度,包括摩擦加热故障平面和与热流体的相互作用。对于故障样品,问题仍然是纯粹摩擦加热,导致碳排序或菌株,或两者的组合。在这项研究中,我们使用中地壳剪切区显示在抗震剪切应变期间的天然岩石样品中发生应变相关的碳排序。穿过剪切区的横向,其相对应变我们相对于周围的较差的岩石量化,显示出拉曼D / g峰强度比的显着降低,这表明剪切区内的碳排序更大。我们将其解释为因爆发剪切应变而不是膨胀的温度而言,这是碳排序的证据,这是由于摩擦加热,而不是摩擦加热,其通常与断层的抗震应变率相关。我们的结果对RAMAN光谱的进一步发展成为地热计(可能会产生错误的岩石样品中的错误结果),并用于了解地壳中的应变局部化过程,以及其相关的流变效应。 (c)2020由elsevier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号