首页> 外文期刊>Nano letters >Dynamic Plasticity and Failure of Microscale Glass: Rate-Dependent Ductile-Brittle-Ductile Transition
【24h】

Dynamic Plasticity and Failure of Microscale Glass: Rate-Dependent Ductile-Brittle-Ductile Transition

机译:微观玻璃的动态可塑性和失效:速率依赖性延性 - 脆性 - 韧性过渡

获取原文
获取原文并翻译 | 示例
           

摘要

Glass has been recently envisioned as a stronger and more robust alternative to silicon in microelectromechanical system applications, including high-frequency resonators and switches. Identifying the dynamic mechanical properties of microscale glass is thus vital for understanding their ability to withstand shocks and vibrations in such demanding applications. However, despite nearly half a century of research, the micromechanical properties of glass and amorphous materials in general are primarily limited to quasi-static strain rates below similar to 0.1/s. Here, we report the in situ high-strain-rate experiments of fused silica micropillars inside a scanning electron microscope at strain rates up to 1335/s. A remarkable ductile-brittle-ductile failure mode transition was observed at increasing strain rates from 0.0008 to 1335/s as the deformation flow transitions between homogeneous-serrated-homogeneous regimes. Detailed surface topography investigation of the tested micropillars revealed that at the intermediate strain rate (similar to 64/s) can be attributed to the simultaneous nucleation of multiple shear bands along with dissipative deformation heating. This unique rate-dependent deformation behavior of the glass micropillars highlights the importance and need of extending such microscale high-strain-rate studies to other amorphous materials such as metallic glasses and amorphous metals and alloys. Such investigations can provide critical insights about the damage tolerance and crashworthiness of these materials for real-life applications.
机译:玻璃最近被设想为微机电系统应用中的硅更强大,更强大的替代品,包括高频谐振器和开关。因此,识别微观玻璃的动态机械性能因此至关重要,以了解它们在如此苛刻的应用中承受震动和振动的能力。然而,尽管近半世纪的研究,但一般的玻璃和无定形材料的微机械性能主要限于与0.1 /秒相似的准静态应变率。在此,我们以高达1335 / s的应变速率向扫描电子显微镜内的熔融石英微米的原位高菌株实验报告。在将0.0008至1335 / s的应变速率增加,观察到显着的延性 - 脆性 - 韧性失效模式转变,因为均匀的锯齿状 - 均匀制度之间的变形流动转变。详细的表面形貌调查测试的微米显示,在中间应变速率(<类似于6 / s)锯齿状的流动状态下,负载下降是由各个剪切带的顺序传播引起的。此外,分析计算和有限元模拟表明,负责在非常高应变率(类似于64 / s)的均匀应力应变曲线的原子机制可归因于多个剪切带的同时成核以及耗散变形加热。玻璃微米的这种独特的速率依赖变形行为突出了向其他无定形材料(如金属玻璃和非晶金属和合金)延伸这种微观高应变率研究的重要性和需要。这些调查可以为现实寿命应用提供这些材料的损害耐受性和耐斗争的关键洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号