...
首页> 外文期刊>Nano letters >Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids
【24h】

Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids

机译:低表面张力液体可调谐超液排斥性的表面化学改进

获取原文
获取原文并翻译 | 示例
           

摘要

Super-hydrophobic, super-oleo(amphi)phobic, and super-omniphobic materials are universally important in the fields of science and engineering. Despite rapid advancements, gaps of understanding still exist between each distinctive wetting state. The transition of super-hydrophobicity to super-(oleo-, amphi-, and omni-)phobicity typically requires the use of reentrant features. Today, re-entrant geometry induced super-(amphi- and omni-)phobicity is well-supported by both experiments and theory. However, owing to geometrical complexities, the concept of re-entrant geometry forms a dogma that limits the industrial progress of these unique states of wettability. Moreover, a key fundamental question remains unanswered: are extreme surface chemistry enhancements able to influence super-liquid repellency? Here, this was rigorously tested via an alternative pathway that does not require explicit designer re-entrant features. Highly controllable and tunable vertical network polymerization and functionalization were used to achieve fluoroalkyl densification on nanoparticles. For the first time, relative fluoro-functionalization densities are quantitatively tuned and correlated to super-liquid repellency performance. Step-wise tunable super-amphiphobic nanoparticle films with a Cassie-Baxter state (contact angle of >150 degrees and sliding angle of <10 degrees) against various liquids is demonstrated. This was tested down to very low surface tension liquids to a minimum of ca. 23.8 mN/m. Such findings could eventually lead to the future development of super-(amphi)omniphobic materials that transcend the sole use of re-entrant geometry.
机译:超级疏水性,超级油脂(AMPHI)PHOBIC和超级无乌内翁材料在科学和工程领域普遍重要。尽管提高了快速的进步,但在每个独特的润湿状态之间仍存在理解差距。超级疏水性转变为超级 - (Ole-,Amphi-和Omni-)植物的过渡通常需要使用重圈特征。如今,通过实验和理论,重新参赛者几何体诱导超级(AMPHI和OMNI-)植物。然而,由于几何复杂性,重新参加者几何形状的概念形成了限制这些独特润湿性状态的工业进步的教条。此外,关键的基本问题仍然是未答复的:极端表面化学增强能力能够影响超级液体排斥性吗?这里,通过不需要显式设计者重新参加者特征的替代路径严格地测试了这一点。使用高可控和可调谐的垂直网络聚合和官能化在纳米颗粒上实现氟代烷基致密化。首次,相对氟官能化密度定量调整并与超液排斥性能相关。对各种液体的逐步可调谐超大纳米粒子纳米粒子膜(触角> 150度和<10度的滑动角)。将其测试到非常低的表面张力液体至最少的CA. 23.8 mn / m。这些发现最终可能导致超强(AMPHI)无翅膀材料的未来发展,超越唯一使用再参赛者几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号