...
首页> 外文期刊>Nano letters >An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate
【24h】

An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate

机译:光学调制的自组装谐振能量转移通道

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is similar to 8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future.
机译:我们证明了一种光学控制的分子级通过栅极,其使用光诱导的荧光分子的荧光分子来调节激子的流动。该装置由四个空间上布置在自组装DNA纳米结构上的四种荧光团组成。它们在一起,它们形成了类似于标准晶体管的谐振能量转移(RET)网络,其具有源极,通道,漏极和栅极。当栅极荧光团直接兴奋时,将设备切换到。激子从源流向排水管,产生强输出荧光。如果没有这种刺发,通过沿途吸收路径,激发通过装置的激子流动,导致输出荧光弱。在这封信中,我们描述了传递门的设计和制造。我们进行稳态分析,揭示这种特定实施的开/关荧光比率类似于8.7。为了展示通过门的动态调制,我们打开和关闭栅极激励并测量输出荧光的相应变化。我们表征了这些转变的上升和下降时间,表明它们比RET网络调制的其他方法更快和/或更容易实现。传递门是由深状态调制的第一动态RET的逻辑门,并用作概念验证装置,用于将来建立更复杂的RET系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号