首页> 外文期刊>Nanotechnology >Atomically thin van der Waals tunnel field-effect transistors and its potential for applications
【24h】

Atomically thin van der Waals tunnel field-effect transistors and its potential for applications

机译:原子上薄van der waals隧道场效应晶体管及其应用的潜力

获取原文
获取原文并翻译 | 示例
           

摘要

Power dissipation is a crucial problem as the packing density of transistors increases in modern integrated circuits. Tunnel field-effect transistors (TFETs), which have high energy filtering provided by band-to-band tunneling (BTBT), have been proposed as an alternative electronics architecture to decrease the energy loss in bias operation and to achieve steep switching at room temperature. Very recently, the BTBT behavior has been demonstrated in van der Waals heterostructures by using unintentionally doped semiconductors. The reason of the BTBT formation is attributed to a significant band bending near the heterointerface, resulting in carrier accumulations. In this work, to investigate charge transport in type-III transistors, we adopted the same band-bending concept to fabricate van der Waals BP/MoS2 heterostructures. Through analyzing the temperature dependence of their electrical properties, we carefully ruled out the contribution of metal-semiconductor contact resistances and improved our understanding of carrier injection in 2D type-III transistors. The BP/MoS2 heterostructures showed both negative differential resistance and 1/f(2) current fluctuations, strongly demonstrating the BTBT operation. Finally, we also designed a TFET based on this heterostructure with an ionic liquid gate, and this TFET demonstrated an subthreshold slope can successfully surmount the thermal limit of 60 mV/decade. This work improves our understanding of charge transport in such layered heterostructures and helps to improve the energy efficiency of next-generation nanoscale electronics.
机译:功率耗散是一种至关重要的问题,因为现代集成电路中的晶体管的包装密度增加。已经提出了通过带 - 带隧道(BTBT)提供高能量滤波的隧道场效应晶体管(TFET)作为替代电子架构,以降低偏置操作中的能量损失,并在室温下实现陡峭切换。最近,通过使用无意掺杂的半导体,在范德华的异质结构中证明了BTBT行为。 BTBT形成的原因被归因于异质面附近的显着带弯曲,导致载体累积。在这项工作中,要调查III型晶体管中的电荷传输,我们采用了相同的带弯曲概念来制造van der WaaS BP / MOS2异质结构。通过分析其电气性质的温度依赖性,我们仔细排除了金属半导体接触电阻的贡献,并改善了我们对2D型-III晶体管中的载体注射的理解。 BP / MOS2异质结构显示出负差分电阻和1 / F(2)电流波动,强烈展示BTBT操作。最后,我们还设计了一种基于这种异质结构的TFET,具有离子液体栅极,并且该TFET表明了亚阈值斜率可以成功地超越60 mV /十年的热限。这项工作改善了我们对这种层状异质结构中的电荷运输的理解,并有助于提高下一代纳米级电子的能效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号