首页> 外文期刊>Nanotechnology >Carbon resistive probe memory designed for ultra-high storage density
【24h】

Carbon resistive probe memory designed for ultra-high storage density

机译:碳电阻探头记忆设计用于超高存储密度

获取原文
获取原文并翻译 | 示例
           

摘要

Probe-based storage memories are considered one of the most promising solutions to address the mass storage issues in the near future. However, data size arising from conventional probe memories is usually larger than probe size due to the thermal diffusion effect. To eliminate such thermal interference and make data dimension fully dominated by probe dimension, we proposed a concept of carbon-based resistive probe memory and developed a comprehensive computational model to predict its write, rewrite and readout performances governed by electro-thermal and mass concentration processes. The physical reality of such a theoretical model was demonstrated through the good agreement between the calculated and experimental measured threshold voltages for different layered thickness. The data bit of carbon-based resistive probe memory, considered as the sp(2)filament inside sp(3) background, is formed completely underneath the tip edge due to the localized electric field induced here. This makes the bit size fully determined by the probe tip dimension and allows for the achievement of ultra-high density using an ultra-small probe tip with low energy consumption. Such a conductive filament can be also rewritten back to its pristine sp(3) state at relatively high temperature (similar to 250 degrees C) and detected by sensing the device reading contrast (similar to 1). The designed carbon-based resistive probe memory can retain its bit completeness even if we reduce the bit pitch to 28 nm for a probe size of 25 nm, exhibiting a superior immunity to thermal cross-talk effect. It, however, induces strong readout cross-talk, which is revealed from the resistance image of the multiple bit pattern. This adversely reduces the achievable recording density due to the required large bit pitch, which can be alleviated using either a very sharp tip apex or the optical readout scheme.
机译:基于探针存储的记忆被认为是最有前途的解决方案,以解决在不久的将来,大容量存储的问题之一。然而,从现有的探针存储器产生数据的大小通常比探针尺寸大,由于热扩散效果。为了消除这种热干扰,使数据尺寸由探头的尺寸完全主宰,我们提出的基于碳的电阻探头内存的概念,并制定了全面的计算模型来预测它的写,改写,并通过电热和质量浓度进程的制约,读表演。这样的理论模型的物理现实是通过对不同分层厚度的计算值和实验测量的阈值电压之间的良好的一致性证实。基于碳的电阻探针存储器的数据位,视为属(2)长丝的内部SP(3)的背景下,完全形成的前端边缘的下方,由于这里所引起的局部电场。这使得由探头尖端尺寸完全确定的比特大小,并允许超高密度的使用具有低能量消耗的超小型探针尖端的实现。这样的导电性细丝也可以重写回其原始的SP(3)的状态在相对高的温度下(类似于250度C)和通过感测(类似于1)所述装置读取对比度检测。所设计的基于碳的电阻探针存储器可以保持其完整性比特即使我们降低比特间距28nm的为25nm的探针尺寸,表现出优异的免疫热串扰的影响。它,但是,诱导强的读出串扰,这是从所述多个比特图案的电阻图像显现出来。此可实现的记录密度减少了不利由于所需大位间距,这可以使用一个非常尖锐的尖端顶点或光读出方案来缓解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号