首页> 外文期刊>Nanotechnology >The role of CdS doping in improving SWIR photovoltaic and photoconductive responses in solution grown CdS/PbS heterojunctions
【24h】

The role of CdS doping in improving SWIR photovoltaic and photoconductive responses in solution grown CdS/PbS heterojunctions

机译:Cds掺杂在改善溶液中的旋流光伏和光电导响应在溶液中的作用,生长Cds / PBS杂交功能

获取原文
获取原文并翻译 | 示例
           

摘要

Low cost short wavelength infrared (SWIR) photovoltaic (PV) detectors and solar cells are of very great interest, yet the main production technology today is based on costly epitaxial growth of InGaAs layers. In this study, layers of p-type, quantum confined (QC) PbS nano-domains (NDs) structure that were engineered to absorb SWIR light at 1550 nm (Eg = 0.8 eV) were fabricated from solution using the chemical bath deposition (CBD) technique. The layers were grown on top of two different n-type CdS intermediate layers (Eg = 2.4 eV) using two different CBD protocols on fluoride tin oxide (FTO) substrates. Two types of CdS/PbS heterojunction were obtained to serve as SWIR PV detectors. The two resulting devices showed similar photoluminescence behavior, but a profoundly different electrical response to SWIR illumination. One type of CdS/PbS heterojunction exhibited a PV response to SWIR light, while the other demonstrated a photo-response to SWIR light only under an applied bias. To clarify this intriguing phenomenon, and since the only difference between the two heterojunctions could be the doping level of the CdS layer, we measured the doping level of this layer by means of the surface photo voltage (SPV). This yielded different polarizations for the two devices, indicating different doping levels of the CdS for the two different fabrication protocols, which was also confirmed by Hall Effect measurements. We performed current voltage measurements under super bandgap illumination, with respect to CdS, and got an electrical response indicating a barrier free for holes transfer from the CdS to the PbS. The results indicate that the different response does, indeed, originate from variations in the band structures at the interface of the CdS/PbS heterojunction due to the different doping levels of the CdS. We found that, unlike solar cells or visible light detectors having similar structure, in SWIR photodetectors, a type I heterojunction is formed having a barrier at the interface that limits the injection of the photo-exited electrons from the QC-PbS to the CdS side. Higher n-doped CdS generates a narrow depletion region on the CdS side, with a spike like barrier that is narrow enough to enable tunneling current, leading to a PV current. Our results show that an external quantum efficiency (EQE) of similar to 2% and an internal quantum efficiency (IQE) of similar to 20% can be obtained, at zero bias, for CBD grown SWIR sensitive CdS/PbS-NDs heterojunctions.
机译:低成本短波矩形红外线(SWIR)光伏(PV)探测器和太阳能电池具有很大的兴趣,但目前主要生产技术基于IngaAs层的昂贵外延生长。在该研究中,使用化学浴沉积(CBD)制造在1550nm(例如= 0.8eV)下制造以吸收1550nm(例如= 0.8eV)的P型,量子限制(QC)PBS纳米域(NDS)结构。(CBD )技术。使用两种不同的CBD方案在氟化物氧化锡(FTO)衬底上的两种不同的CBD方案在两种不同的N型CDS中间层(例如= 2.4eV)上生长。获得两种类型的CDS / PBS异质结以作为SWIR PV探测器。两个所得到的装置显示出类似的光致发光行为,而是对SWIR照明的一种深刻不同的电气响应。一种类型的CDS / PBS异质结具有对SWIR光的PV响应,而另一个表现出仅在施加的偏压下对SWIR灯的光响应。为了阐明这种有趣的现象,并且由于两个异质结之间的唯一差异可以是CDS层的掺杂水平,因此我们通过表面光电压(SPV)测量了该层的掺杂水平。这对于两种器件产生不同的偏振,表明两种不同的制造方案的CD的不同掺杂水平,这也通过霍尔效应测量来证实。我们在超级带隙照明下进行电流电压测量,相对于CD,并且具有表示从CD转移到PBS的孔的屏障的电响应。结果表明,由于CD的不同掺杂水平,不同的响应确实来自CDS / PBS异质结的界面处的频带结构中的变化。我们发现,与具有类似结构的太阳能电池或可见光检测器不同,在SWIR光电探测器中,在界面处形成具有屏障的I型异质结,其限制从QC-PBS向CDS侧注入光导电子的屏障。较高的N掺杂CD在CDS侧产生窄的耗尽区域,具有像足够窄的屏障那样的峰值,以使隧道电流能够实现,导致PV电流。我们的结果表明,在零偏压下,可以获得与2%相似的外部量子效率(EQE)和类似于20%的内部量子效率(IQE),用于CBD生长SWIR敏感CDS / PBS-NDS异质结。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号