首页> 外文期刊>Nanotechnology >Energy-efficient switching of nanomagnets for computing: straintronics and other methodologies
【24h】

Energy-efficient switching of nanomagnets for computing: straintronics and other methodologies

机译:用于计算的节能切换纳米磁珠:情节和其他方法

获取原文
获取原文并翻译 | 示例
           

摘要

The need for increasingly powerful computing hardware has spawned many ideas stipulating, primarily, the replacement of traditional transistors with alternate 'switches' that dissipate miniscule amounts of energy when they switch and provide additional functionality that are beneficial for information processing. An interesting idea that has emerged recently is the notion of using two-phase (piezoelectric/magnetostrictive) multiferroic nanomagnets with bistable (or multi-stable) magnetization states to encode digital information (bits), and switching the magnetization between these states with small voltages (that strain the nanomagnets) to carry out digital information processing. The switching delay is similar to 1 ns and the energy dissipated in the switching operation can be few to tens of aJ, which is comparable to, or smaller than, the energy dissipated in switching a modern-day transistor. Unlike a transistor, a nanomagnet is 'non-volatile', so a nanomagnetic processing unit can store the result of a computation locally without refresh cycles, thereby allowing it to double as both logic and memory. These dual-role elements promise new, robust, energy-efficient, high-speed computing and signal processing architectures (usually non-Boolean and often non-von-Neumann) that can be more powerful, architecturally superior (fewer circuit elements needed to implement a given function) and sometimes faster than their traditional transistor-based counterparts. This topical review covers the important advances in computing and information processing with nanomagnets, with emphasis on strain-switched multiferroic nanomagnets acting as non-volatile and energy-efficient switches-a field known as 'straintronics'. It also outlines key challenges in straintronics.
机译:需要日益强大的计算硬件已经产生了许多想法规定,主要是与备用替换传统晶体管的“开关”的是微乎其微耗散的能量时,他们切换并提供额外的功能,是用于信息处理是有利的。最近出现了一个有趣的想法是使用两阶段的概念(压电/磁致伸缩)多铁纳米磁体以双稳态(或多稳态)的磁化状态来编码数字信息(位),并切换与小电压,这些状态之间的磁化(即拉紧纳米磁体)来进行数字信息的处理。切换延迟类似于1纳秒并在开关操作耗散可以是几到几十AJ,这相当于,或小于在切换的现代晶体管耗散的能量的能量。不像晶体管,纳米磁体是“非易失性”,所以一个纳米磁性处理单元可以在本地保存一个计算的结果,而不刷新周期,从而允许其兼作逻辑和存储器。这些双作用元件保证新,健壮,高能效,高速的计算和信号处理架构(通常非布尔和经常非冯诺依曼),其可以是更强大的,结构上优于(更少的电路元件需要实现一个给定的功能),有时比传统的基于晶体管的同行更快。此局部审查涵盖在计算和与纳米磁体信息处理的重要进展,重点放在应变交换作为非易失性和节能开关-一个称为“straintronics”字段多铁纳米磁体。它还概述了straintronics的主要挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号