首页> 外文期刊>Nanotechnology >Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation
【24h】

Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation

机译:P-N CufeO2-ZnO异质结料光电仪的纳米工程,具有改进光学电化学水氧化的光吸收和充电收集

获取原文
获取原文并翻译 | 示例
           

摘要

The effective utilization of abundant visible solar light for photoelectrochemical water splitting is a green approach for energy harvesting, to reduce the enormous rise of carbon content in the atmosphere. Here, a novel efficient design strategy for p-n type nano-heterojunction photoanodes is demonstrated, with the goal of improving water splitting efficiency by growing low band gap p-CuFeO2 nanolayers on n-ZnO nanorods by an easy and scalable electrochemical route. The photoconversion efficiency of p-n CuFeO2/ZnO photoanodes is found to be similar to 450% higher than that of pristine ZnO nanorod electrodes under visible solar light illumination (lambda > 420 nm, intensity 10mW cm(-2)). The p-n CuFeO2/ZnO nano-engineering not only boosts the visible light absorption but also resolves limitations regarding effective charge carrier separation and transportation due to interfacial band alignment. This photoanode also shows remarkably enhanced stability, where the formation of p-n nano-heterojunction enhances the easy migration of holes to the electrode/electrolyte interface, and of electrons to the counter electrode (Pt) for hydrogen generation. Therefore, this work demonstrates that p-n nano-engineering is a potential strategy to design light-harvesting electrodes for water splitting and clean energy generation.
机译:有效利用光电化学水分解的丰富可见太阳灯是一种用于能量收集的绿色方法,从而降低大气中碳含量的巨大上升。这里,通过简单且可伸缩的电化学途径在N-ZnO纳米棒上生长低带隙P-CUFEO2纳米纳米,对P-N型纳米异质结光锅进行新的高效设计策略。发现P-N CuFeO 2 / ZnO光电片的光电转化效率与可见光光照(Lambda> 420nm,强度10mW cm(-2))相似的450%高于原始ZnO纳米棒电极的450%。 P-N CuFeO2 / ZnO纳米工程不仅提高了可见光吸收,而且还解决了由于界面带对准引起的有效电荷载流子分离和运输的限制。该PhotoNode还显示出显着增强的稳定性,其中P-N纳米异质结的形成增强了孔对电极/电解质界面的易于迁移,以及用于氢气的对电极(PT)的电子。因此,这项工作表明,P-N纳米工程是设计用于水分裂和清洁能量产生的光收获电极的潜在策略。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号