首页> 外文期刊>Nanotechnology >In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance
【24h】

In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance

机译:石墨烯量子点 - 石墨碳氮化物杂交杂种的原位装饰,对其可见光光催化性能的评价

获取原文
获取原文并翻译 | 示例
           

摘要

This work spotlights the development of a plasmonic photocatalyst showing surface plasmon induced enhanced visible light photocatalytic (PC) performance. Plasmonic Au nanoparticles (NPs) are decorated over the hybrid nanosystem of graphitic carbon nitride (GCN) and graphene quantum dots (GQD) by citrate reduction method. Surface plasmon resonance (SPR) induced enhancement of Raman G and 2D band intensity is encountered on excitation of the Plasmonic hybrid at 514.5 nm, which is near to the 532 nm absorption band of Au NPs. Time-resolved photoluminescence and XPS studies show charge transfer interaction between GQD-GCN and Au NPs. Plasmonic hybrid exhibits an enhanced PC activity over the other catalysts in the photodegradation of methylene blue (MB) under visible light illumination. Plasmonic photocatalyst displays more than 6 fold enhancement in the photodecomposition rate of MB over GQD and nearly 2 fold improvement over GCN and GQD-GCN. GQD-GCN absorbs mostly in the near visible region and can be photoexcited by visible light of wavelength (lambda) < 460 nm. Plasmon activation in Au NPs decorated GQD-GCN could exploit the entire UV-visible light for photocatalysis. Furthermore, plasmonic Au act as antennas for accumulation and enhancement of localized electromagnetic field at the interface with GQD-GCN, and thereby promotes photogeneration of large numbers of carriers on GQD-GCN. The carriers are separated by charge transfer migration from hybrid to Au NPs. Finally, the carriers on the plasmonic Au nanostructures initiate MB degradation under visible light. Our results have shown that plasmon decoration is a suitable strategy to design a carbon based hybrid photocatalyst for solar energy conversion.
机译:这项工作占据了表达表面等离子体诱导增强的可见光光催化(PC)性能的等离子体光催化剂的开发。通过柠檬酸还原方法在石墨碳氮化物(GCN)和石墨烯量子点(GQD)的杂化纳米系统上装饰等离子体Au纳米颗粒(NPS)。表面等离子体共振(SPR)诱导拉曼G和2D带强度的增强在514.5nm处的等离子体杂种的激发上遇到,靠近Au nps的532nm吸收带。时间分辨的光致发光和XPS研究显示GQD-GCN和Au NP之间的电荷转移相互作用。在可见光照射下,等离子体杂交在其他催化剂上表现出在其他催化剂上增强的PC活性(MB)。等离子体光催化剂在GQD上的MB的光致率和GCN和GQD-GCN上的近2倍改善,显示出超过6倍的增强倍数。 GQD-GCN主要吸收在近可见区域中,并且可以通过波长(Lambda)<460nm的可见光光透镜。 AU NPS的等离子体激活装饰GQD-GCN可以利用整个UV可见光进行光催化。此外,等离子体AU作为天线,用于累积和增强与GQD-GCN的界面处的局部电磁场的积累和增强,从而促进大量载波对GQD-GCN的荧光。载体通过从杂交体迁移到Au nps的电荷转移迁移分离。最后,等离子体Au纳米结构上的载体在可见光下引发Mb降解。我们的研究结果表明,等离子体装饰是设计用于太阳能转换的碳的混合光催化剂的合适策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号