首页> 外文期刊>Nanotechnology >Tuning the morphologies of fluorine-doped tin oxides in the three-dimensional architecture of graphene for high-performance lithium-ion batteries
【24h】

Tuning the morphologies of fluorine-doped tin oxides in the three-dimensional architecture of graphene for high-performance lithium-ion batteries

机译:高性能锂离子电池的石墨烯三维架构中氟掺杂锡氧化物的形态

获取原文
获取原文并翻译 | 示例
           

摘要

The morphology of electrode materials plays an important role in determining the performance of lithium-ion batteries (LIBs). However, studies on determining the most favorable morphology for high-performance LIBs have rarely been reported. In this study, a series of F-doped SnOx (F-SnO2 and F-SnO) materials with various morphologies was synthesized using ethylenediamine as a structure-directing agent in a facile hydrothermal process. During the hydrothermal process, the F-SnOx was embedded in situ into the three-dimensional (3D) architecture of reduced graphene oxide (RGO) to form F-SnOx@RGO composites. The morphologies and nanostructures of F-SnOx, i.e., F-SnO2 nanocrystals, F-SnO nanosheets, and F-SnO2 aggregated particles, were fully characterized using electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Electrochemical characterization indicated that the F-SnO2 nanocrystals uniformly distributed in the 3D RGO architecture exhibited higher specific capacity, better rate performance, and longer cycling stability than the F-SnOx with other morphologies. These excellent electrochemical performances were attributed to the uniform distribution of the F-SnO2 nanocrystals, which significantly alleviated the volume changes of the electrode material and shortened the Li ion diffusion path during lithiation/delithiation processes. The F-SnO2@RGO composite composed of uniformly distributed F-SnO2 nanocrystals also exhibited excellent rate performance, as the specific capacities were measured to be 1158 and 648mA h g(-1) at current densities of 0.1 and 5 A g(-1), respectively.
机译:电极材料的形态在确定锂离子电池(LIBS)的性能方面起着重要作用。但是,关于确定高性能LIBS最有利的形态的研究很少被报道。在该研究中,使用乙二胺作为构型水热法的结构引导剂合成了一系列具有各种形态的F掺杂的SNOX(F-SNO2和F-SNO)材料。在水热过程中,将F-SnOX原位嵌入到氧化石墨烯(RGO)的三维(3D)架构中以形成F-SNOX @ Rgo复合材料。 F-SNOX的形态和纳米结构,即F-SNO2纳米晶体,F-SNO纳米片和F-SNO2聚集颗粒,用电子显微镜,X射线衍射和X射线光电子谱完全表征。电化学表征表明,在3D RGO架构中均匀地分布的F-SNO2纳米晶体表现出更高的特定容量,更好的速率性能,以及与其他形态的F-SNOX的循环稳定性更长。这些优异的电化学性能归因于F-SnO2纳米晶体的均匀分布,这显着减轻了电极材料的体积变化并在锂化/脱水过程中缩短了Li离子扩散路径。由均匀分布的F-SnO2纳米晶体组成的F-SnO2 @ Rgo复合材料也表现出优异的速率性能,因为测量的特定容量为1158和648mA Hg(-1),在0.1和5ag(-1)的电流密度下, 分别。

著录项

  • 来源
    《Nanotechnology》 |2017年第39期|共11页
  • 作者单位

    Beijing Univ Chem Technol State Key Lab Chem Resource Engn Beijing 100029 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem 29 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem 29 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem 29 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Beijing Univ Chem Technol State Key Lab Chem Resource Engn Beijing 100029 Peoples R China;

    Chinese Acad Sci Tech Inst Phys &

    Chem 29 Zhongguancun East Rd Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    fluorine doping; tin oxide; graphene; morphology; lithium-ion batteries;

    机译:氟掺杂;氧化锡;石墨烯;形态;锂离子电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号