首页> 外文期刊>Nanotechnology >Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array
【24h】

Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array

机译:双通道非凡的紫外线通过铝纳米孔阵列

获取原文
获取原文并翻译 | 示例
           

摘要

Ultraviolet (UV) surface plasmon (SP) has distinct applications in UV filters, high-density optical storage, spectral enhancement, optical detectors, and nanolithography, which are closely related to plasmon-induced extraordinary optical transmission (EOT). However, such EOT in the UV region has not been the subject of detailed research. We report UV transmission based on theoretical research using the finite-difference time-domain method, by modulating the Al thickness, hole size, array periodicity, and SiO2 overlayer thickness. It is notable that we can obtain dual-channel UV transmission peaks with excellent qualities such as high transmissivity, zero cross-talk, narrow bandwidth, and perfect symmetry, by optimizing the parameters. The UV transmission peaks have been discovered to non-monotonously shift with increasing hole size. Although array periodicity has great influence on the transmission peak position, the peak energy in the UV region is much less than the value predicted by the well-known periodicity-related surface plasmon polariton (SPP) wavelength equation; the energy discrepancy in the UV region can reach above 20%, which is much larger than the value (typically 4%) in the visible-infrared region. Furthermore, the SiO2 overlayer may significantly modify the transmission properties. The Al nanohole arrays have also been found to exhibit distinct multi-band UV electric field enhancement properties with special interface effect and size effect. Such extraordinary dual-channel UV transmission with zero cross-talk, based on a very simple Al nanohole array, has promising application in dual-channel UV filters, high-density optical storage, and plasmon-enhanced fluorescence/Raman spectroscopy, which generally involves two wavebands (writing/reading storage or exciting/emission wavelengths). This study is expected to broaden our fundamental understanding of the UV EOT phenomenon, and provide references for experimental research and application of deep-UV and
机译:紫外(UV)表面等离子体(SP)在UV滤波器,高密度光存储,光谱增强,光学检测器和纳米线中具有明显的应用,其与等离子体诱导的非凡光学传输(EOT)密切相关。然而,UV地区的这种EOT并未成为详细研究的主题。我们通过使用有限差分时域方法来报告基于理论研究的UV传输,通过调制Al厚度,孔尺寸,阵列周期性和SiO2覆盖层厚度。值得注意的是,通过优化参数,我们可以获得具有优异品质的双通道UV传输峰值,例如高透射率,零串扰,窄带宽和完美对称性。已经发现UV传输峰与增加孔尺寸的非单调转变。虽然阵列周期对传输峰值位置产生很大影响,但UV区域中的峰值能量远小于众所周知的周期性相关表面等离子体极性(SPP)波长方程所预测的值; UV区域中的能量差异可以达到20%以上,比可见红外区域中的值(通常为4%)大得多。此外,SiO2覆盖器可以显着地修改传输属性。也发现Al纳米孔阵列表现出具有特殊界面效果和尺寸效应的不同的多带UV电场增强特性。这种非凡的双通道UV传输,基于非常简单的AL纳米孔阵列,具有零串扰,在双通道UV滤波器,高密度光学存储和等离子体增强的荧光/拉曼光谱中具有很有希望的应用,这通常涉及两个波段(写入/读取存储或兴奋/发射波长)。该研究预计将扩大对紫外线EOT现象的根本理解,并提供对深紫色的实验研究和应用的参考

著录项

  • 来源
    《Nanotechnology》 |2017年第21期|共15页
  • 作者单位

    Anhui Univ Technol Sch Mat Sci &

    Engn Maanshan 243002 Anhui Peoples R China;

    Anhui Univ Technol Sch Mat Sci &

    Engn Maanshan 243002 Anhui Peoples R China;

    Taizhou Univ Dept Phys &

    Elect Engn Taizhou 318000 Zhejiang Peoples R China;

    Chinese Acad Sci Inst Solid State Phys Anhui Key Lab Nanomat &

    Nanotechnol Key Lab Mat Phys Hefei 230031 Anhui Peoples R China;

    Chinese Acad Sci Inst Solid State Phys Anhui Key Lab Nanomat &

    Nanotechnol Key Lab Mat Phys Hefei 230031 Anhui Peoples R China;

    Anhui Univ Technol Sch Mat Sci &

    Engn Maanshan 243002 Anhui Peoples R China;

    Nanjing Univ Aeronaut &

    Astronaut Coll Sci Nanjing 210016 Jiangsu Peoples R China;

    Chinese Acad Sci Inst Solid State Phys Anhui Key Lab Nanomat &

    Nanotechnol Key Lab Mat Phys Hefei 230031 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    plasmon; ultraviolet; dual channel; extraordinary transmission;

    机译:等离子体;紫外线;双通道;非凡传输;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号