...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Investigating Alkylsilane Monolayer Tribology at a Single-Asperity Contact with Molecular Dynamics Simulation
【24h】

Investigating Alkylsilane Monolayer Tribology at a Single-Asperity Contact with Molecular Dynamics Simulation

机译:在单粗糙接触与分子动力学模拟中研究烷基硅烷单层摩擦学

获取原文
获取原文并翻译 | 示例
           

摘要

Chemisorbed monolayer films are known to possess favorable characteristics for nanoscale lubrication of micro- and nanoelectromechanical systems (MEMS/NEMS). Prior studies have shown that the friction observed for monolayer-coated surfaces features a strong dependence on the geometry, of contact. Specifically, tip-like geometries have been shown to penetrate into monolayer films, inducing defects in the monolayer chains and leading to plowing mechanisms during shear, which result in higher coefficients of friction (COF) than those observed for planar geometries. In this work, we use molecular dynamics simulations to examine the tribology of model silica single-asperity contacts under shear with monolayer-coated substrates featuring various film densities. It is observed that lower monolayer densities lead to reduced COFs, in contrast to results for planar systems where COF is found to be nearly independent of monolayer density. This is attributed to a liquid-like response to shear, whereby fewer defects are imparted in monolayer chains from the asperity, and chains are easily displaced by the tip as a result of the higher free volume. This transition in the mechanism of molecular plowing suggests that liquid-like films should provide favorable lubrication at single-asperity contacts.
机译:已知化学的单层膜具有用于微型和纳米机电系统的纳米级润滑(MEMS / NEM)的纳米级润滑的良好特性。事先研究表明,对于单层涂覆的表面观察到的摩擦具有对接触的几何形状的强依赖性。具体地,已经显示出尖端的几何形状渗透到单层膜中,诱导单层链中的缺陷并导致剪切期间的犁犁机构,这导致比对于平面几何形状观察到的摩擦系数(COF)。在这项工作中,我们使用分子动力学模拟来检查剪切下模拟二氧化硅单齿性触点的摩擦学,用各种胶片密度为特征在单层涂层的基板下。观察到较低的单层密度导致COF的减少,与发现COF被发现几乎与单层密度几乎无关的平面系统的结果。这归因于剪切的液体响应,从而在从粗糙度的单层链中赋予较少的缺陷,并且由于自由体积较高,通过尖端容易移位链。在分子犁的机制中的这种转变表明,液体状薄膜应该在单粗糙触点处提供有利的润滑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号