首页> 外文期刊>RSC Advances >Molecular insights into the improved clinical performance of PEGylated interferon therapeutics: a molecular dynamics perspective
【24h】

Molecular insights into the improved clinical performance of PEGylated interferon therapeutics: a molecular dynamics perspective

机译:分子见解进入Pegylated干扰素治疗剂的临床表现:分子动力学视角

获取原文
获取原文并翻译 | 示例
           

摘要

PEGylation is a widely adopted process to covalently attach a polyethylene glycol (PEG) polymer to a protein drug for the purpose of optimizing drug clinical performance. While the outcomes of PEGylation in imparting pharmacological advantages have been examined through experimental studies, the underlying molecular mechanisms remain poorly understood. Using interferon (IFN) as a representative model system, we carried out comparative molecular dynamics (MD) simulations of free PEGx, apo-IFN, and PEGx-IFN (x = 50, 100, 200, 300) to characterize the molecular-level changes in IFN introduced by PEGylation. The simulations yielded molecular evidence directly linked to the improved protein stability, bioavailability, retention time, as well as the decrease in protein bioactivity with PEG conjugates. Our results indicate that there is a tradeoff between the benefits and costs of PEGylation. The optimal PEG chain length used in PEGylation needs to strike a good balance among the competing factors and maximizes the overall therapeutic efficacy of the protein drug. We anticipate the study will have a broad implication for protein drug design and development, and provide a unique computational approach in the context of optimizing PEGylated protein drug conjugates.
机译:PEG化是一种广泛采用的方法,以便将聚乙二醇(PEG)聚合物共价连接到蛋白质药物中,以优化药物临床表现。虽然通过实验研究检查了赋予药理优势的聚乙二醇化的结果,但是潜在的分子机制仍然明白。使用干扰素(IFN)作为代表性模型系统,我们进行了游离PEGX,APO-IFN和PEGX-IFN(X = 50,100,300)的比较分子动力学(MD)模拟,以表征分子水平通过PEG化引入IFN的变化。模拟产生分子证据与改善的蛋白质稳定性,生物利用度,保留时间以及与PEG缀合物的蛋白质生物活性的降低直接相关。我们的结果表明,聚乙二醇化的益处和成本之间存在权衡。在聚乙二醇化中使用的最佳PEG链长度需要在竞争因素之间进行良好的平衡,并最大限度地提高蛋白质药物的总体治疗效果。我们预期该研究将对蛋白质药物设计和开发具有广泛的含义,并在优化聚乙二醇化蛋白质药物缀合物的背景下提供独特的计算方法。

著录项

  • 来源
    《RSC Advances》 |2018年第5期|共8页
  • 作者单位

    Idaho State Univ Kasiska Div Hlth Sci Coll Pharm Dept Biomed &

    Pharmaceut Sci Meridian ID 83642 USA;

    Loyola Univ Chicago Dept Cell &

    Mol Physiol Maywood IL 60153 USA;

    Reynolds Law Firm PC 225 SW 4th St Corvallis OR 97333 USA;

    Washington State Univ Dept Chem Pullman WA 99164 USA;

    Idaho State Univ Kasiska Div Hlth Sci Coll Pharm Dept Biomed &

    Pharmaceut Sci Meridian ID 83642 USA;

    Idaho State Univ Kasiska Div Hlth Sci Coll Pharm Dept Biomed &

    Pharmaceut Sci Meridian ID 83642 USA;

    Idaho State Univ Kasiska Div Hlth Sci Coll Pharm Dept Biomed &

    Pharmaceut Sci Meridian ID 83642 USA;

    Idaho State Univ Kasiska Div Hlth Sci Coll Pharm Dept Biomed &

    Pharmaceut Sci Meridian ID 83642 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号