首页> 外文期刊>RSC Advances >A multi-scale approach to describe electrical impulses propagating along actin filaments in both intracellular and in vitro conditions
【24h】

A multi-scale approach to describe electrical impulses propagating along actin filaments in both intracellular and in vitro conditions

机译:一种多尺寸方法来描述沿细胞内和体外条件沿肌动蛋白长丝繁殖的电脉冲

获取原文
获取原文并翻译 | 示例
           

摘要

An accurate and efficient characterization of the polyelectrolyte properties for cytoskeleton filaments are key to the molecular understanding of electrical signal propagation, bundle and network formation, as well as their potential nanotechnological applications. In this article, we introduce an innovative multi-scale approach able to account for the atomistic details of a protein molecular structure, its biological environment, and their impact on electrical impulses propagating along wild type actin filaments. The formulation includes non-trivial contributions to the ionic electrical conductivity and capacitance coming from the diffuse part of the electrical double layer of G-actins. We utilize this monomer characterization in a non-linear inhomogeneous transmission line prototype model to account for the monomer-monomer interactions, dissipation and damping perturbations along the filament length. A novel, simple, accurate, approximate analytic expression has been obtained for the transmission line model. Our results reveal the propagation of electrical signal impulses in the form of solitons for the range of voltage stimulus and electrolyte solutions typically present for intracellular and in vitro conditions. The approach predicts a lower electrical conductivity with higher linear capacitance and non-linear accumulation of charge for intracellular conditions. Our results show a significant influence of the voltage input on the electrical impulse shape, attenuation and kern propagation velocity. The filament is able to sustain the soliton propagation at almost constant kern velocity for the in vitro condition, whereas the intracellular condition displays a remarkable deceleration. Additionally, the solitons are narrower and travel faster at higher voltage input. As a unique feature, this multi-scale theory is able to account for molecular structure conformation (mutation) and biological environment (protonations/deprotonations) changes often present in pathological conditions. It is also applicable to other highly charged rod-like polyelectrolytes with relevance in biomedicine and biophysics.
机译:用于细胞骨架细丝的聚电解质性能的准确和有效表征是电信号传播,束和网络形成的分子理解的关键,以及它们的潜在纳米技术应用。在本文中,我们介绍了一种创新的多尺度方法,能够考虑蛋白质分子结构,生物环境的原子细节,其生物环境以及它们对沿着野生型肌动蛋白长丝传播的电脉冲的影响。该配方包括来自来自G-Actins的电双层的漫射部分的离子电导率和电容的非普通贡献。我们利用非线性非均匀传输线原型模型中的这种单体表征,以考虑沿细丝长度的单体 - 单体相互作用,耗散和阻尼扰动。对于传输线模型,已经获得了一种新颖的简单,准确的近似的分析表达式。我们的结果揭示了电信号脉冲以孤子的形式传播,用于通常存在于细胞内和体外条件的电压刺激和电解质溶液的范围。该方法预测具有更高线性电容和用于细胞内条件的电荷的较低电导率和非线性累积。我们的结果表明电压输入对电气脉冲形状,衰减和kern传播速度的显着影响。灯丝能够在几乎恒定的kern速度下维持孤子繁殖的体外条件,而细胞内条件显示出显着的减速。此外,孤子较窄,在更高电压输入时更快地行进。作为一种独特的特征,这种多尺度理论能够考虑分子结构构象(突变)和生物环境(质子/去质子)通常存在于病理条件下的变化。它还适用于其他带来具有与生物医学和生物物理学相关性的高度电荷的棒状聚电解质。

著录项

  • 来源
    《RSC Advances》 |2018年第22期|共12页
  • 作者单位

    Univ Texas San Antonio Dept Phys &

    Astron San Antonio TX 78249 USA;

    Univ Texas San Antonio Dept Phys &

    Astron San Antonio TX 78249 USA;

    Univ Texas San Antonio Dept Phys &

    Astron San Antonio TX 78249 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号