首页> 外文期刊>RSC Advances >Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor
【24h】

Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor

机译:Mn-Fe纳米颗粒上的石墨烯氧化物催化剂,用于增强烯烃在浆料反应器中的合成气产生的增强烯烃生产

获取原文
获取原文并翻译 | 示例
           

摘要

Fe nanoparticles (NPs) supported on reduced graphene oxide (rGO) nano-sheets were promoted with Mn and used for the production of light olefins in Fischer-Tropsch reactions carried out in a slurry bed reactor (SBR). The prepared catalysts were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), transmission electron microscope (TEM), Raman spectroscopy, N-2 physisorption, temperature programmed reduction (TPR) and X-ray photoelectron spectroscopic (XPS) methods. Mn was shown to preferentially migrate to the Fe NP surface, forming a Mn-rich shell encapsulating a core rich in Fe. The Mn shell regulated the diffusion of molecules to and from the catalyst core, and preserved the metallic Fe phase by lowering magnetite formation and carburization, so decreasing water gas shift reaction (WGSR) activity and CO conversion, respectively. Furthermore, the Mn shell reduced H-2 adsorption and increased CO dissociative adsorption which enhanced olefin selectivity by limiting hydrogenation reactions. Modification of the Mn shell thickness regulated the catalytic activity and olefin selectivity. Simultaneously the weak metal-support interaction further increased the migration ability owing to the utilization of a graphene-based support. Space velocities, pressures and operating temperatures were also tested in the reactor to further enhance light olefin production. A balanced Mn shell thickness produced with a Mn concentration of 16 mol Mn/100 mol Fe was found to give a good olefin yield of 19% with an olefin/paraffin (O/P) ratio of 0.77. Higher Mn concentrations shielded the active sites and reduced the conversion dramatically, causing a fall in olefin production. The optimum operating conditions were found to be 300 degrees C, 2 MPa and 4.2 L g(-1) h(-1) of 1:1 H-2:CO syngas flow; these gave the olefin yield of 19%.
机译:用Mn促进了石墨烯(RGO)纳米片上负载的Fe纳米颗粒(NPS),并用Mn促进并用于在浆料床反应器(SBR)中进行的Fischer-Tropsch反应中的光烯烃。制备的催化剂的特征在于X射线荧光(XRF),X射线衍射(XRD),透射电子显微镜(TEM),拉曼光谱,N-2物理化,温度编程减少(TPR)和X射线光电子光谱( XPS)方法。显示MN优先迁移到Fe NP表面,形成富含含量富含Fe的核心的富含Mn的壳。 Mn Shell将分子的扩散调节到催化剂核心,通过降低磁铁矿形成和渗碳来保留金属Fe相,因此分别降低水煤气变换反应(WGSR)活性和CO转化。此外,Mn壳减少了H-2吸附,并增加了通过限制氢化反应来增强烯烃选择性的共分离吸附。 Mn壳厚度的改性调节催化活性和烯烃选择性。同时,由于利用基于石墨烯的支持,弱金属支撑相互作用进一步提高了迁移能力。在反应器中还测试了空间速度,压力和操作温度,以进一步增强光烯烃产生。发现具有16mol Mn / 100mol Fe的Mn浓度产生的平衡Mn壳厚度,得到烯烃产率为19%,烯烃/石蜡(O / P)比为0.77。较高的Mn浓度屏蔽活性位点并显着降低转化率,导致烯烃生产落下。最佳的操作条件被发现为300℃,2MPa和4.2Lg(-1)H(-1),为1:1 H-2:Co合成气流量;这些使烯烃产量为19%。

著录项

  • 来源
    《RSC Advances》 |2018年第27期|共10页
  • 作者单位

    Egypt Japan Univ Sci &

    Technol Mat Sci &

    Engn Dept Alexandria 21934 Egypt;

    Univ Toyama Dept Appl Chem Sch Engn Gofuku 3190 Toyama 9308555 Japan;

    Egypt Japan Univ Sci &

    Technol Mat Sci &

    Engn Dept Alexandria 21934 Egypt;

    Univ Toyama Dept Appl Chem Sch Engn Gofuku 3190 Toyama 9308555 Japan;

    Univ Toyama Dept Appl Chem Sch Engn Gofuku 3190 Toyama 9308555 Japan;

    Egypt Japan Univ Sci &

    Technol Mat Sci &

    Engn Dept Alexandria 21934 Egypt;

    Univ Toyama Dept Appl Chem Sch Engn Gofuku 3190 Toyama 9308555 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号