首页> 外文期刊>RSC Advances >Dual nanocomposite carrier transport layers enhance the efficiency of planar perovskite photovoltaics
【24h】

Dual nanocomposite carrier transport layers enhance the efficiency of planar perovskite photovoltaics

机译:双纳米复合材料载体输送层增强了平面钙钛矿光伏的效率

获取原文
获取原文并翻译 | 示例
           

摘要

In photovoltaic devices, more effective transfer of dissociated electrons and holes from the active layer to the respective electrodes will result in higher fill factors and short-circuit current densities and, thus, enhanced power conversion efficiencies (PCEs). Planar perovskite photovoltaics feature an active layer that can provide a large exciton diffusion length, reaching several micrometers, but require efficient carrier transport layers for charge extraction. In this study, we employed two nanocomposite carrier transfer layersan electron transport layer (ETL) comprising [6,6]phenyl-C-61-butyric acid methyl ester (PC61BM) doped with the small molecule 4,7-diphenyl-1,10-phenanthroline (Bphen), to enhance the electron mobility, and a hole transfer layer (HTL) comprising poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) doped with molybdenum disulfide (MoS2) nanosheets, to enhance the hole mobility. We used ultraviolet photoelectron spectroscopy to determine the energy levels of these composite ETLs and HTLs; atomic force microscopy and scanning electron microscopy to probe their surface structures; and transmission electron microscopy and synchrotron grazing-incidence small-angle X-ray scattering to decipher the structures of the ETLs. Adding a small amount (less than 1%) of Bphen allowed us to tune the energy levels of the ETL and decrease the size of the PC61BM clusters and, therefore, generate more PC61BM aggregation domains to provide more pathways for electron transport, leading to enhanced PCEs of the resulting perovskite devices. We used quantitative pump-probe data to resolve the carrier dynamics from the perovskite to the ETL and HTL, and observed a smaller possibility of carrier recombination and a shorter injection lifetime in the perovskite solar cell doubly modified with carrier transport layers, resulting in an enhancement of the PCE. The PCE reached 16% for a planar inverted perovskite device featuring an ETL incorporating 0.5 wt% Bphen within PC61BM and 0.1 wt% MoS2 within PEDOT:PSS; this PCE is more than 50% higher than the value of 10.2% for the corresponding control device.
机译:在光伏器件中,从活性层与各个电极的离子电子和孔更有效地传递将导致更高的填充因子和短路电流密度,因此增强了电力转换效率(PCE)。 Planar Perovskite Photovoltaics具有有源层,可以提供大的激子扩散长度,达到几微米,但需要有效的载流层进行电荷提取。在该研究中,我们使用了包含[6,6]苯基-C-61-丁酸甲酯(PC61BM)的两个纳米复合材料载体转移层电子传输层(ETL)掺杂有小分子4,7-二苯基-1,10 -phenanthroline(Bphen),增强电子迁移率,以及包含聚(3,4-亚乙基噻吩)的空穴转移层(HTL):聚苯乙烯磺酸盐(PEDOT:PSS)掺杂有二硫化钼(MOS2)纳米晶片,以增强空穴迁移率。我们使用紫外光电子光谱法确定这些复合ETL和HTL的能量水平;原子力显微镜和扫描电子显微镜探测其表面结构;和透射电子显微镜和同步辐射 - 发生小角X射线散射以破译ETL的结构。添加少量(小于1%)的BPHEN允许我们调整ETL的能量水平并降低PC61BM集群的大小,因此产生更多PC61BM聚合结构域,以提供更多的电子传输途径,导致增强由此产生的钙钛矿设备的PCE。我们使用定量泵探针数据来解决从钙钛矿到ETL和HTL的载波动态,并且观察到载体重组的较小可能性和钙钛矿太阳能电池中的较短注射寿命,用载流子输送层进行双重修饰,导致增强PCE。 PCE的PCE达到16%,适用于在PC61BM和PCOT中的PC61BM和0.1wt%MOS2内包含0.5wt%的Bphen的ETL; PSS;该PCE比相应控制装置的值高于10.2%的50%以上。

著录项

  • 来源
    《RSC Advances》 |2018年第23期|共9页
  • 作者单位

    Natl Chiao Tung Univ Dept Mat Sci &

    Engn Hsinchu 300 Taiwan;

    Natl Chiao Tung Univ Dept Electrophys Hsinchu 300 Taiwan;

    Natl Chiao Tung Univ Dept Mat Sci &

    Engn Hsinchu 300 Taiwan;

    Feng Chia Univ Dept Chem Engn Taichung 40724 Taiwan;

    Natl Chiao Tung Univ Dept Electrophys Hsinchu 300 Taiwan;

    Natl Chiao Tung Univ Dept Mat Sci &

    Engn Hsinchu 300 Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号