首页> 外文期刊>RSC Advances >Pressure-driven supercritical CO2 transport through a silica nanochannel
【24h】

Pressure-driven supercritical CO2 transport through a silica nanochannel

机译:通过二氧化硅纳米通道的压力驱动的超临界CO2运输

获取原文
获取原文并翻译 | 示例
           

摘要

A thorough understanding of supercritical CO2 (scCO(2)) transport through nanochannels is of prime significance for the effective exploitation of shale resources and the mitigation of greenhouse gas emission. In this work, we employed the non-equilibrium molecular dynamics simulations method to investigate the pressure-driven scCO(2) transport behavior through silica nanochannels with different external forces and pore sizes. The simulations reveal that the capability of scCO(2) diffusion enhances both in the bulk region and the surface adsorbed layer with the increasing of pressure gradient or nanochannel size, in addition, the slip length increases nonlinearly with the external acceleration or nanochannel width increases and finally reaches a maximum value. The negative slippage occurs at lower pressure gradient or within the narrower nanochannel. Overall, it is the combined effect of strong adsorption, surface diffusion and slippage that causes the nonlinear relation between flow rate and pressure gradient or nanochannel size. The present work would provide theoretical guidance for the scCO(2) enhanced shale oil/gas recovery, CO2 storage, and mass transport in nanoporous materials.
机译:通过纳米通道的超临界二氧化碳(SCCO(2))运输的彻底了解是对页岩资源的有效开采和对温室气体排放的缓解的主要意义。在这项工作中,我们采用了非平衡的分子动力学模拟方法来研究通过具有不同外力和孔尺寸的二氧化硅纳米的压力驱动的SCCO(2)输送行为。该模拟表明,随着压力梯度或纳米通道尺寸的增加,SCCO(2)扩散的能力在堆积区域和表面吸附层中增强,以及增加的滑动长度随着外部加速度或纳米通道宽度增加而增加最后达到最大值。负片在较低的压力梯度或较窄的纳米通道内发生。总的来说,它是强度吸附,表面扩散和滑动的综合影响,导致流速和压力梯度或纳米通道尺寸之间的非线性关系。本作本作能为SCCO(2)增强的页岩油/气体回收,CO2储存和纳米多孔材料中的质量运输提供理论指导。

著录项

  • 来源
    《RSC Advances》 |2018年第3期|共8页
  • 作者单位

    China Univ Petr Sch Sci Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Sch Sci Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Sch Sci Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Sch Sci Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Sch Sci Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Sch Sci Qingdao 266580 Shandong Peoples R China;

    China Univ Petr Sch Sci Qingdao 266580 Shandong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号