首页> 外文期刊>RSC Advances >Ultrafine Co(3)O(4)nanolayer-shelled CoWP nanowire array: a bifunctional electrocatalyst for overall water splitting
【24h】

Ultrafine Co(3)O(4)nanolayer-shelled CoWP nanowire array: a bifunctional electrocatalyst for overall water splitting

机译:超细CO(3)O(4)纳米壳壳体纳米线阵列:用于整体水分裂的双功能电催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

The development of bifunctional electrocatalysts based on highly efficient non-noble metals is pivotal for overall water splitting. Here, a composite electrode of Co3O4@CoWP is synthesized, where an ultrathin layer composed of Co(3)O(4)nanoparticles is grown on CoWP nanowires supported on a carbon cloth (CC). The Co3O4@CoWP/CC electrode exhibits excellent electrocatalytic activity and improved kinetics towards both the oxygen and hydrogen evolution reactions (OER and HER). The Co3O4@CoWP/CC electrode achieves a current density of 10 mA cm(-2)at a low overpotential of 269 mV for the OER and -10 mA cm(-2)at 118 mV for the HER in 1.0 M KOH solution. The voltage applied to a two-electrode water electrolyzer for overall water splitting, while employing the Co3O4@CoWP/CC electrode as both an anode and a cathode, in order to reach a current density of 10 mA cm(-2), is 1.61 V, which is better than that for the majority of reported non-noble electrocatalysts. Moreover, the Co3O4@CoWP/CC electrode exhibits good stability over 24 h with slight attenuation. The electrode benefits from the enhanced adsorption of oxygen intermediates on Co(3)O(4)during the OER, the increased ability for water dissociation and the optimized H adsorption/desorption ability of CoWP nanowires during the HER. This study provides a feasible approach for cost-effective and high-performance non-noble metal bifunctional catalysts for overall water electrolysis.
机译:基于高效非贵金属的双官能电催化剂的开发是整个水分裂的关键。这里,合成了CO 3 O 4 @牛皮的复合电极,其中由CO(3)O(4)纳米颗粒组成的超薄层在支撑在碳布(CC)上的牛纳米线上生长。 CO3O4 @ COWP / CC电极表现出优异的电催化活性和改进的动力学朝向氧气和氢进化反应(OER和她)。 CO3O4 @ COWP / CC电极在118mV的oer和-10ma cm(-2)为1.0 m koh溶液中的118mV时,在269mV的低过电位下实现10 mA cm(-2)的电流密度。施加到两个电极水电解器的电压,用于整个水分裂,同时采用CO3O4 @牛仔/ CC电极作为阳极和阴极,以达到10mA cm(-2)的电流密度,为1.61 v,这比报告的非高贵电催化剂大多数更好。此外,CO3O4 @牛仔/ CC电极在24小时内表现出良好的稳定性,轻微衰减。电极受益于伊尔(3)O(4)上的氧中间体的增强吸附,水解解离能力增加以及牛纳米线的优化H吸附/解吸能力。本研究为成本效益和高性能的非贵金属金属双官能催化剂提供了一种可行的整体水电解方法。

著录项

  • 来源
    《RSC Advances》 |2020年第49期|共10页
  • 作者单位

    Zhengzhau Univ Sch Chem Engn Zhengzhou 450001 Peoples R China;

    Beijing Univ Chem Technol State Key Lab Chem Resource Engn 15 Beisanhuan East Rd Beijing 100029 Peoples R China;

    Zhengzhau Univ Sch Chem Engn Zhengzhou 450001 Peoples R China;

    Zhengzhau Univ Sch Chem Engn Zhengzhou 450001 Peoples R China;

    Zhengzhau Univ Sch Chem Engn Zhengzhou 450001 Peoples R China;

    Zhengzhau Univ Sch Chem Engn Zhengzhou 450001 Peoples R China;

    Beijing Univ Chem Technol State Key Lab Chem Resource Engn 15 Beisanhuan East Rd Beijing 100029 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号