首页> 外文期刊>RSC Advances >Polypyrrole decorated metal-organic frameworks for supercapacitor devices
【24h】

Polypyrrole decorated metal-organic frameworks for supercapacitor devices

机译:Polypyrrole为超级电容器设备装饰金属有机框架

获取原文
获取原文并翻译 | 示例
           

摘要

Due to their large specific surface areas and porosity, metal-organic frameworks (MOFs) have found many applications in catalysis, gas separation, and gas storage. However, their use as electronic components such as supercapacitors is stunted due to their poor electrical conductivity. We report a remedy for this by combining the MOF structure with polypyrrole (PPy), a well-known conductive polymer. Three MOFs are studied for modification to this end: CPO-27-Ni and CPO-27-Co (M2DOBDC, M = Ni2+, Co2+, DOBDC = 2,5-dihydroxy-1,4-benzenedicarboxylate) and HKUST-1 (Cu-3(BTC)(2), BTC = 1,3,5 benzenetricarboxylate). The gravimetric capacitance of pure MOFs is boosted several orders of magnitude after reinforcement of PPy (e.g., from 0.679 to 185 F g(-1) for HKUST-1 and PPy-HKUST-1, respectively), and is much higher than reported for pure PPy. In total, these PPy-d-MOFs exhibit specific capacitances up to 354 F g(-1), retaining 70% of this value even after 2500 cycles. Among them, the highest capacitance is found for PPy-CPO-27-Ni (354 F g(-1)), followed by PPy-CPO-27-Co (263 F g(-1)) and PPy-HKUST-1 (185 F g(-1)). The maximum operating potential for these electrodes is 0.5 V, which is restricted by the contact of MOF with aqueous electrolyte and with extremely low PPy content. As a solution, higher PPy loading and rational adjustment of particle size and porosity of both MOF and PPy are recommended so that the MOF/electrolyte interface is limited, leading to more robust electrode. The work completed here describes a highly promising approach to tackling the electrically insulating nature of MOFs, paving the way for their use in electrochemical energy storage devices.
机译:由于其大的比表面积和孔隙率,金属 - 有机框架(MOF)在催化,气体分离和储气中发现了许多应用。然而,由于它们的导电性差,它们用作诸如超级电容器的电子元件的用途。通过将MOF结构与聚吡咯(PPY),众所周知的导电聚合物组合来报告该补救措施。研究了三种MOF用于修饰,对此目的进行修饰:CPO-27-Ni和CPO-27-CO(M2DOBDC,M = Ni2 +,CO2 +,DOBDC = 2,5-二羟基-1,4-苯二甲羧酸盐)和HKUST-1(CU -3(BTC)(2),BTC = 1,3,5苯齐甲酸酯)。 PPY加固后纯MOF的重量电容升高了几个数量级(例如,从0.679至185 f G(-1)分别用于HKust-1和Ppy-HKust-1),远高于报道纯净的ppy。总共,这些PPY-D-MOF表现出高达354f g(-1)的特定电容,即使在2500次循环后也保持70%的该值。其中,找到了PPY-CPO-27-NI的最高电容(354f g(-1)),然后是ppy-cpo-27-co(263 f g(-1))和ppy-hkust-1 (185 f g(-1))。这些电极的最大运行电位为0.5V,其受MOF与含水电解质的接触和具有极低的PPY含量的限制。作为解决方案,建议使用较高的PPY负载和理性调整MOF和PPY的粒度和孔隙率,使得MOF /电解质界面受到限制,导致更强大的电极。完成的工作描述了一种高度有希望的方法来解决MOF的电绝缘性,铺平为电化学能量存储装置的使用方式。

著录项

  • 来源
    《RSC Advances》 |2020年第34期|共11页
  • 作者单位

    Univ New Brunswick Dept Chem 30 Dineen Dr Toole Hall Fredericton NB Canada;

    Queens Univ Belfast Sch Chem &

    Chem Engn Stranmillis Rd David Kier Bldg Belfast BT9 5AG Antrim North Ireland;

    Univ New Brunswick Dept Chem 30 Dineen Dr Toole Hall Fredericton NB Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号