首页> 外文期刊>RSC Advances >Experimental investigation on the evolution of structure and mechanical properties of basalt induced by microwave irradiation
【24h】

Experimental investigation on the evolution of structure and mechanical properties of basalt induced by microwave irradiation

机译:微波辐射诱导玄武岩结构与力学性能演化的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Demand is growing for explosive-free and high efficiency rock breakage systems for mining, petroleum and civil engineering applications. Microwave irradiation is becoming a promising technique to deal with rock breakage due to its high efficiency, controllability and environmental friendliness. The cylindrical basalt samples with diameter of 50 mm and height of 100 mm and semi-disc specimens with diameter of 50 mm and thickness of 25 mm were irradiated using microwave apparatus (2.45 GHz, 2 kW). The mechanical properties of microwaved basalt have been tested and the micro fractures were quantitatively analyzed. The structural evolution and mechanical properties of basalt between 100 degrees C and 400 degrees C are assessed through the morphology, mineral characteristics and mechanical performance. It is found that the main damage modes of microwaved basalt are intergranular and transgranular fractures. Intergranular fractures generated rapidly at 100 degrees C, while transgranular fractures generated above 200 degrees C. Statistically, the length density of fractures grows fastest at 100 degrees C, while the width of fractures grows fastest at 200 degrees C. The intergranular and transgranular fractures develop rapidly and intersect each other over 400 degrees C, which results in rock failure. The length density of the fractures is the main factor inducing the decrease of compressive strength and fracture toughness of basalt which decrease fastest at 100 degrees C. The elastic modulus decreases fastest at 200 degrees C, which is closely related to the width of fractures. The Poisson's ratio of basalt is significantly improved by microwaves, and is not only affected by fractures size, but also closely relates to fracture type and distribution.
机译:对于采矿,石油和土木工程应用的爆炸性和高效的岩石破损系统,需求增长。由于其高效率,可控性和环境友好,微波辐射正在成为处理岩石破损的有希望的技术。使用微波装置(2.45GHz,2 kW)照射直径为50mm和直径为50mm和厚度为50mm的半盘样品的圆柱形玄武岩样品。微波玄武岩的机械性能进行了测试和微裂缝进行定量分析。通过形态,矿物特性和机械性能评估100℃和400℃之间的玄武岩的结构演化和机械性能。据发现,微波处理玄武岩的主要损坏方式是晶间和穿骨折。在100℃下产生的晶间骨折,而在统计学上,骨折产生的静脉曲张骨折在200摄氏度上方产生的长度密度增长最快,而骨折的宽度在200摄氏度中增长最快。晶间和转晶骨折发生在400摄氏度上迅速且相互交叉,这导致岩石破坏。裂缝的长度密度是诱导玄武岩的压缩强度和断裂韧性降低的主要因素,其在100摄氏度下降低最快的玄武岩。弹性模量在200℃下减少,这与裂缝的宽度密切相关。玄武岩的泊松比是由微波显著提高,不仅受裂缝的大小,但也密切涉及骨折的类型和分布。

著录项

  • 来源
    《RSC Advances》 |2020年第54期|共7页
  • 作者单位

    China Univ Min &

    Technol Sch Mech &

    Civil Engn Beijing 100083 Peoples R China;

    China Univ Min &

    Technol Sch Mech &

    Civil Engn Beijing 100083 Peoples R China;

    China Univ Min &

    Technol Sch Mech &

    Civil Engn Beijing 100083 Peoples R China;

    China Univ Min &

    Technol Sch Mech &

    Civil Engn Beijing 100083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号