首页> 外文期刊>RSC Advances >The intrinsic volumetric capacitance of conducting polymers: pseudo-capacitors or double-layer supercapacitors?
【24h】

The intrinsic volumetric capacitance of conducting polymers: pseudo-capacitors or double-layer supercapacitors?

机译:导电聚合物的内在体积电容:伪电容器或双层超级电容器?

获取原文
获取原文并翻译 | 示例
           

摘要

The capacitance of conducting polymers represents one of the most important material parameters that in many cases determines the device and material performances. Despite a vast number of experimental studies, the theoretical understanding of the origin of the capacitance in conducting polymers remains unsatisfactory and appears even controversial. Here, we present a theoretical method, based on first principle capacitance calculations using density functional theory (DFT), and apply it to calculate the volumetric capacitance of two archetypical conducting polymers: poly(3,4-ethylene dioxythiophene) (PEDOT) and polypyrrole (PPy). Our aim is to achieve a quantitate description of the volumetric capacitance and to provide a qualitative understanding of its nature at the atomistic level. We find that the volumetric capacitance of PEDOT and PPy is approximate to 100 F cm(-3) and approximate to 300 F cm(-3), respectively, which is within the range of the corresponding reported experimental results. We demonstrate that the capacitance of conducting polymers originates from charges stored in atomistic Stern layers formed by counterions and doped polymeric chains. The Stern layers have a purely electrostatic origin, since the counterions do not form any bonds with the atoms of the polymeric chains, and no charge transfer between the counterions and conducting polymer takes place. This classifies the conducting polymers as double-layer supercapacitors rather than pseudo-capacitors. Further, we analyze contributions to the total capacitance originating from the classical capacitance C-C and the quantum capacitance C-Q, respectively, and find that the latter provides a dominant contribution. The method of calculations of the capacitance developed in the present paper is rather general and opens up the way for engineering and optimizing the capacitive response of the conducting polymers.
机译:导电聚合物的电容代表了许多情况下最重要的材料参数之一,即确定设备和材料性能。尽管大量的实验研究,但对导电聚合物中电容的起源的理论理解仍然不令人满意,甚至出现甚至有争议。在这里,我们提出了一种理论方法,基于使用密度泛函理论(DFT)的第一原理电容计算,并将其应用于两个原型导电聚合物的体积电容:聚(3,4-亚乙基二氧噻吩)(PEDOT)和聚吡咯(PPY)。我们的目的是实现体积电容的定量描述,并在原始水平对其性质提供定性理解。我们发现PEDOT和PPY的体积电容近似为100 f cm(-3),分别近似为300 f cm(-3),其在相应的报告的实验结果的范围内。我们证明导电聚合物的电容来自储存在由抗衡膜和掺杂的聚合物链形成的原子船体层中的电荷起源。船尾层具有纯粹的静电来源,因为抗衡离子不与聚合物链的原子形成任何粘合,并且在抗衡离子和导电聚合物之间没有电荷转移。这将导电聚合物作为双层超级电容器而不是伪电容器进行分类。此外,我们分析了源自经典电容C-C和量子电容C-Q的贡献,并发现后者提供了主导贡献。本文中开发的电容计算方法是相当一般的,并打开工程和优化导电聚合物的电容响应的方式。

著录项

  • 来源
    《RSC Advances》 |2019年第72期|共11页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号