首页> 外文期刊>RSC Advances >DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface
【24h】

DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface

机译:Ag装饰SnO2(110)表面上甲氧基丙醇气体传感机制的DFT计算与分析

获取原文
获取原文并翻译 | 示例
           

摘要

Methoxy propanol has been widely used in modern industry and consumer products. Inhalation or skin exposure to methoxy propanol for a long period would bring about safety challenges on human habitat and health. Ag decorated SnO2 mesoporous material has been synthesized and shown to exhibit high sensitivity and good selectivity to methoxy propanol among other interferential VOC gases. Density Functional Theory study were conducted to yield insight into the surface-adsorbate interactions and therefore the gas sensing improvement mechanism by presenting accurate energetic and electronic properties for the Ag/SnO2 system. Firstly, an electron transfer model on Ag and SnO2 grain interface was put forward to illustrate the methoxy propanol gas sensing mechanism. Then, a three-layer adsorption model (TLAM) was proposed to investigate methoxy propanol gas sensing properties on a SnO2 (110) surface. In the TLAM method, taking SnO2 (110) surface for the basis, layer 1 illustrates the decoration of metal Ag on SnO2 (110) surface. Layer 2 represents the adsorption of molecular oxygen on metal Ag decorated SnO2 (110) surface. Layer 3 indicates the adsorption of methoxy propanol, and for comparison, three other VOC gases (namely, ethanol, isopropanol and p-xylene) on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed consecutively. All the adsorption processes were calculated by means of Density Functional Theory method; the adsorption energy, net charge transfer, DOS, PDOS and also experimental data were utilized to investigate the methoxy propanol gas sensing mechanism on Ag decorated SnO2 (110) surface with oxygen species pre-adsorbed.
机译:甲氧基丙醇已广泛用于现代工业和消费品。长期吸入或皮肤暴露于甲氧基丙醇将带来人类栖息地和健康的安全挑战。 AG装饰的SnO2中孔材料已被合成并显示在其他干涉VOC气体中对甲氧基丙醇具有高灵敏度和良好的选择性。进行密度泛函理论研究,以产生对表面吸附相互作用的洞察,从而使气体传感改善机制呈现为AG / SNO2系统的精确能量和电子性能。首先,提出了Ag和SnO2晶粒界面上的电子转移模型以说明甲氧基丙醇气体传感机构。然后,提出了一种三层吸附模型(TLAM)以研究SNO2(110)表面上的甲氧基丙醇气体感测性质。在TLAM方法中,取SnO2(110)表面,层1示出了在SnO2(110)表面上的金属Ag的装饰。层2表示金属Ag上的分子氧的吸附,装饰SnO2(110)表面。第3层表明甲氧基丙醇的吸附,并进行了三种其他VOC气体(即,乙醇,异丙醇和对二甲苯)在Ag装饰的SnO 2(110)表面,其具有连续预吸附的氧物质。通过密度泛函理论方法计算所有吸附过程;利用吸附能量,净电荷转移,DOS,PDO和实验数据研究Ag装饰的SnO2(110)表面上的甲氧基丙醇气体传感机制,具有预先吸附的氧。

著录项

  • 来源
    《RSC Advances》 |2019年第61期|共10页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号