首页> 外文期刊>RSC Advances >Fabrication of polyaniline-graphene/polystyrene nanocomposites for flexible gas sensors
【24h】

Fabrication of polyaniline-graphene/polystyrene nanocomposites for flexible gas sensors

机译:用于柔性气体传感器的聚酰氯 - 石墨烯/聚苯乙烯纳米复合材料的制备

获取原文
获取原文并翻译 | 示例
           

摘要

This research work presents the fabrication of polyaniline (PANI) and graphene-polyaniline (graphene-PANI) nanocomposite-coated polystyrene (PS) nanofibre mats, as well as their application in flexible and highly sensitive gas sensors. The surface morphology of the flexible films is investigated using a number of techniques. The profilometry studies confirmed that the electrospun fibres are evenly distributed over a large surface area and there was no visible difference between coated and uncoated fibres. The SEM morphology studies revealed that a nanocomposite consisting of 10 nm PANI nanofibres and graphene forms a uniform coating around 3 m diameter PS fiber. AFM showed differences in the 3D surface topography between plain PS nanofibres and coated ones, which showed an increased roughness. Moreover, conductive AFM has indicated an increase in the electrical current distribution from picoamperes to nanoamperes of the PS samples coated with PANI and graphene-PANI because of the applied voltage to the AFM tip that contacted the sample surface. The chemical properties of all the samples are analysed by Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD), which revealed the presence of chemical interactions between the nanocomposites and the polymeric backbones. The TGA study indicated that graphene-PANI coated fibres have the highest thermal stability compared to the pure fibres. The addition of the nanocomposite layer to the PS fibre significantly increased the electrical conductivity. Therefore, nanocomposite-coated flexible membranes are used to fabricate carbon dioxide gas sensors (sensing range: 20-100 ppm). Due to the higher surface area of the nanocomposite coated fibre the availability of adsorption area is also higher, which leads to an increase in sensitivity to carbon dioxide gas. The sensitivity increases with the increase in gas concentration. The average response time of the sensor is calculated to be 65 seconds, with good and uniform repeatability.
机译:该研究工作介绍了聚苯胺(PANI)和石墨烯 - 聚苯胺(石墨烯-PALI)纳米复合涂覆的聚苯乙烯(PS)纳米纤维垫的制备,以及它们在柔性且高敏感的气体传感器中的应用。使用多种技术研究柔性膜的表面形态。型研究证实,电纺纤维在大表面积上均匀分布,涂覆和未涂覆的纤维之间没有可见差异。 SEM形态学研究表明,由10nm Pani纳米纤维和石墨烯组成的纳米复合材料形成约3M直径为3m的均匀涂层。 AFM在普通PS纳米纤维和涂覆的涂层之间的3D表面形貌差异显示出增加的粗糙度。此外,导电AFM已经表明,由于施加电压与接触样品表面的AFM尖端的施加电压,从PICoamperes与涂有PANI和石墨烯-PANI的PS样品的纳米孔的电流分布增加。通过傅里叶变换红外光谱(FTIR)和X射线粉末衍射(XRD)分析所有样品的化学性质,X射线粉末衍射(XRD)显示纳米复合材料和聚合物骨架之间的化学相互作用。 TGA研究表明,与纯纤维相比,石墨烯-PANI涂覆的纤维具有最高的热稳定性。将纳米复合材料层加入PS纤维显着提高了电导率。因此,纳米复合涂覆的柔性膜用于制造二氧化碳气体传感器(感测范围:20-100ppm)。由于纳米复合材料涂覆纤维的较高表面积,吸附区域的可用性也更高,这导致对二氧化碳气体的敏感性的增加。灵敏度随着气体浓度的增加而增加。传感器的平均响应时间计算为65秒,可重复性良好和均匀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号