首页> 外文期刊>RSC Advances >In situ generated hydrophobic micro ripples via pi-pi stacked pop-up reduced graphene oxide nanoflakes for extended critical heat flux and thermal conductivities
【24h】

In situ generated hydrophobic micro ripples via pi-pi stacked pop-up reduced graphene oxide nanoflakes for extended critical heat flux and thermal conductivities

机译:原位产生疏水微涟漪通过PI-PI堆叠弹出的氧化石墨烯氧化物纳米薄膜,用于延长临界热通量和导热率

获取原文
获取原文并翻译 | 示例
           

摘要

We report the synthesis of thermally heated pop-up reduced graphene oxide (Pop-rGO) and its nanofluid (Pop-rGO-Nf) in DI water for extended critical heat flux (CHF) in a nucleate pool boiling experiment. When Pop-rGO-Nf is boiled over a nichrome (NiCr) wire heater the CHF values were increased up to 132%, 156%, and 175% with increasing concentrations of 0.0005 vol%, 0.001 vol%, and 0.005 vol% at heat fluxes of q '' = 264 333 kW m(-2), 339 202 kW m(-2), and 327 895 kW m(-2), respectively, because of the higher surface area of 430 m(2) g(-1). We also found a decrease in the CHF value from 0.05 vol% (175%) to 0.01 vol% (153%) for Pop-rGO-Nf due to the nanofluid concentration reaching the saturation point. After nucleate pool boiling, the developed Pop-rGO-Nf built-up layer on the NiCr wire surface showed regular pi-pi stacking with novel micro-rippled structures having uniform nanocavities and nanochannels. The nanocavities strongly helped vapor bubbles to escape from the NiCr wire surface. In addition, the nanochannels were formed by hydrogen bonding of adjacent carboxyl groups of each Pop-rGO nanosheet. The surface hydrophobicity of the built-up layers increased with the increase of the concentration of the Pop-rGO-Nfs, and the surface morphology, roughness average (R-a) and hydrophobicity were determined using FE-SEM, AFM and contact angle (CA) analysis. In our present investigation, during and after the nucleate CHF experiments with Pop-rGO-Nfs, for the first time, we obtained a higher CHF value of 175% at 0.01 vol% and a higher CA of 118 degrees obtained at 0.05 vol%, due to the increase in surface hydrophobicity and the novel micro-rippled structures. We anticipate that the present results suggest that pool boiling employing Pop-rGO-Nf can dissipate the critical heat flux of electronic chips to a greater extent, allowing the enhancement of the cooling performance in existing two-phase heat transfer devices.
机译:我们在DI水中报告了在DI水中的热加热弹出的氧化石墨烯(POP-RGO)及其纳米流体(POP-RGO-NF)的合成,用于核心池沸腾实验中的临界临界热通量(CHF)。当POP-rgo-NF在镍铬镍(NICR)线上加热器时,CHF值增加到132%,156%和175%,浓度的浓度增加0.0005体积%,0.001体积%,0.005体积%在热量下Q''= 264 333 kW m(-2),339 202 kW m(-2)和327 895 kW m(-2),因为较高的表面积为430米(2)g( -1)。由于纳米流体浓度达到饱和点,我们还发现从0.05体积%(175%)至0.01体积%(153%)的CHF值降低。在核心池中煮沸后,NiCr线表面上的开发的Pop-Rgo-NF内置层显示了常规PI-PI堆叠,具有具有均匀纳米蜂窝和纳米的微型微波纹结构。纳米宽度强烈帮助蒸汽气泡从NiCr线表面逸出。此外,通过每个POP-RGO纳米片的相邻羧基的氢键形成纳米烷基。随着POP-RGO-NFS的浓度的增加,内置层的表面疏水性增加,并且使用Fe-SEM,AFM和接触角(CA)测定表面形态,粗糙度平均(RA)和疏水性分析。在我们目前的调查中,在核心CHF实验期间和在POP-RGO-NFS的实验期间,我们首次获得的CHF值为175%,0.01体积%,高于0.05 Vol%的118度,由于表面疏水性和新型微纹波结构的增加。我们预期本结果表明,采用POP-RGO-NF的池沸腾可以在更大程度上消散电子芯片的临界热量通量,从而允许在现有的两相传热装置中提高冷却性能。

著录项

  • 来源
    《RSC Advances》 |2019年第54期|共12页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号