首页> 外文期刊>RSC Advances >Improvement of electric field-induced strain and energy storage density properties in lead-free BNKT-based ceramics modified by BFT doping
【24h】

Improvement of electric field-induced strain and energy storage density properties in lead-free BNKT-based ceramics modified by BFT doping

机译:通过BFT掺杂改性的无铅BNKT基陶瓷中电场诱导的应变和能量储存密度特性的提高

获取原文
获取原文并翻译 | 示例
           

摘要

In this research, the effects of Ba(Fe0.5Ta0.5)O-3 (BFT) additive on the phase evolution, the dielectric, ferroelectric, piezoelectric, electric field-induced strain responses, and energy storage density of the Bi-0.5(Na0.80K0.20)(0.5)TiO3-0.03(Ba0.70Sr0.03)TiO3 (BNKT-0.03BSrT) ceramics have been systematically investigated. The ceramics have been prepared by a solid-state reaction method accompanied by two calcination steps. X-ray diffraction indicates that all ceramics coexist between rhombohedral and tetragonal phases, where the tetragonal phase becomes dominant at higher BFT contents. The addition of BFT also promotes the diffuse phase transition in this system. A significant enhancement of electric field-induced strain response (S-max = 0.42% and = 840 pm V-1) is noted for the x = 0.01 ceramic. Furthermore, the giant electrostrictive coefficient (Q(33) = 0.0404 m(4) C-2) with a giant normalized electrostrictive coefficient (Q(33)/E = 8.08 x 10(-9) m(5) C-2 V-1) are also observed for this composition (x = 0.01). In addition, the x = 0.03 ceramic shows good energy storage properties, i.e. it has a high energy storage density (W = 0.65 J cm(-3) @ 120 degrees C) with very high normalized storage energy density (W/E = 0.13 C mm(-2)), and good energy storage efficiency ( = 90.4% @ 120 degrees C). Overall, these results indicate that these ceramics are one of the promising candidate piezoelectric materials for further development for actuator and high electric power pulse energy storage applications.
机译:在本研究中,BA(Fe0.5TA0.5)O-3(BFT)添加剂对阶段演化,电介质,铁电,压电,电场诱导的应变响应,以及BI-0.5的能量存储密度的影响(Na0.80k0.20)(0.5)TiO3-0.03(Ba0.70SR0.03)TiO3(BNKT-0.03BSRT)陶瓷已被系统地研究。通过固态反应方法制备陶瓷,伴随着两个煅烧步骤。 X射线衍射表明,所有陶瓷在菱​​形和四方相之间共存,其中四边形相位在更高的BFT内容物中占主导地位。添加BFT还促进该系统中的漫反相转变。对于X = 0.01陶瓷,注意到电场诱导的应变响应(S-MAX = 0.42%且= 840mPV-1)的显着增强。此外,巨型电致伸缩系数(Q(33)= 0.0404m(4)C-2),具有巨型归一化电致伸缩系数(Q(33)/ E = 8.08×10(-9)M(5)C-2 V.对于该组合​​物也观察到-1)(X = 0.01)。另外,X = 0.03陶瓷显示出良好的能量存储性能,即它具有高能量存储密度(W = 0.65J厘米(-3)×120℃),具有非常高的归一化存储能量密度(W / E = 0.13 C mm(-2)),良好的储能效率(= 90.4%@ 120℃)。总的来说,这些结果表明,这些陶瓷是用于致动器和高电力脉冲能量存储应用的进一步开发的承诺候选压电材料之一。

著录项

  • 来源
    《RSC Advances》 |2019年第21期|共10页
  • 作者单位

    Chiang Mai Univ Dept Phys &

    Mat Sci Fac Sci Chiang Mai 50200 Thailand;

    Rajamangala Univ Technol Tawan Ok Fac Agroind Technol Dept Appl Sci &

    Biotechnol Chanthaburi Campus Chanthaburi 22210 Thailand;

    Chiang Mai Univ Dept Phys &

    Mat Sci Fac Sci Chiang Mai 50200 Thailand;

    Chiang Mai Univ Dept Phys &

    Mat Sci Fac Sci Chiang Mai 50200 Thailand;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号