首页> 外文期刊>RSC Advances >Desalination by dragging water using a low-energy nano-mechanical device of porous graphene
【24h】

Desalination by dragging water using a low-energy nano-mechanical device of porous graphene

机译:通过使用多孔石墨烯的低能量纳米机械装置拖动水的脱盐

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a nano-structured suction system based on graphene sheets for water desalination processes. The desalination system modeled in this work is an alternative process to the commonly employed but energy intensive reverse osmosis process. The nano-structured system generates drag forces, which pull water molecules from the saline solution into a chamber. Our molecular simulations consist of two rigid walls of graphene: one wall with 5 angstrom pores permeable to water molecules forms the membrane, while the other wall acts as a plunger to induce and control the transfer of desalinated water molecules, which accumulate in a chamber between the two walls. Prior to the desalination process, the chamber is saturated with one monolayer of water molecules. The desalination occurs when the plunger moves to create unsaturated space inside the chamber. At plunger speeds up to 10 cm s(-1), the system desalinates saltwater films in the open part of the membrane. At higher plunger speeds, the desalination chamber expands faster than molecules can fill the chamber, resulting in cavitation and poor desalination. At plunger speeds of 0.5 cm s(-1), the desalination occurs via a quasi-equilibrium process, which minimizes the energy necessary to drive desalination. Our findings suggest that the desalination process requires less energy than reverse osmosis methods at plunger speeds up to 0.15 cm s(-1) (for the chosen pore density). The filling profile of desalinated water molecules inside the chamber occurs via three distinct regimes: the first two regimes correspond to the formation of one and then two monolayers adsorbed to the chamber's walls. The third regime corresponds to the filling of molecules between the adsorbed layers, which approaches a density close to the density of bulk liquid water. Including flexibility in the graphene sheets does not affect the energy consumption for desalination processes occurring after the formation of the second monolayer, but flexible membranes require a slightly larger pore diameter (7 angstrom) than rigid membranes.
机译:我们提出了一种基于石墨烯片的纳米结构抽吸系统,用于水脱盐过程。在这项工作中建模的海水淡化系统是常用但能量密集型反渗透过程的替代过程。纳米结构系统产生阻力,将水分子从盐水溶液中拉到腔室中。我们的分子模拟由两个刚性石墨烯壁组成:一个壁与水分子可透过5埃孔的壁形成膜,而另一壁用作柱塞以诱导和控制脱盐水分子的转移,该裂解水分子在腔室中累积并控制两个墙壁。在脱盐过程之前,腔室用一种单层水分子饱和。当柱塞移动以在腔室内产生不饱和空间时发生脱盐。在柱塞速度高达10cm S(-1)时,该系统在膜的开口部分中脱落盐水薄膜。在较高的柱塞速度下,脱水室比分子填充腔室的速度快得速度快,导致空化和脱盐不良。在柱塞速度为0.5cm s(-1)时,通过准平衡过程发生脱盐,这使得最小化驱动脱盐所需的能量。我们的研究结果表明,脱盐过程比柱塞速度高达0.15cm S(-1)(用于所选择的孔密度),脱盐过程比反渗透方法更少。腔室内的脱盐水分子的填充轮廓通过三个不同的制度发生:前两个制度对应于形成一个,然后将两种单层吸附在腔室的壁上。第三种结果对应于吸附层之间的分子填充,其接近靠近散装液体水密度的密度。包括石墨烯片的柔韧性不会影响在形成第二单层后发生的脱盐过程的能量消耗,但是柔性膜需要略微较大的孔径(7埃)而不是刚性膜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号