首页> 外文期刊>Optics Letters >Engineering water-tolerant core/shell upconversion nanoparticles for optical temperature sensing
【24h】

Engineering water-tolerant core/shell upconversion nanoparticles for optical temperature sensing

机译:用于光学温度传感的工程耐水芯/壳载体载体纳米粒子

获取原文
获取原文并翻译 | 示例
           

摘要

Luminescence thermometry is a promising approach using upconversion nanoparticles (UCNPs) with a nanoscale regime in biological tissues. UCNPs are superior to conventional fluorescent markers, benefiting from their autofluorescence suppression and deep imaging in tissues. However, they are still limited by poor water solubility and weak upconversion luminescence intensity, especially at a small particle size. Recently, YVO4:Er+3; Yb+3 nanoparticles have shown high efficiency upconversion (UC) luminescence in water at single-particle level and high contrast imaging in biological models. Typically, a 980-nm laser triggers the UC process in the UCNPs, which overlaps with maximum absorption of water molecules that are dominant in biological samples, resulting in biological tissues overheating and possible damaging. Interestingly, neodymium (Nd+3) possesses a large absorption cross section at the water low absorption band (808 nm), which can overcome overheating issues. In this Letter, we introduce Nd+3 as a new near-infrared absorber and UC sensitizer into YVO4:Er+3; Yb+3 nanoparticles in a core/shell structure to ensure successive energy transfer between the new UC sensitizer (Nd+3) to the upconverting activator (Er+3). Finally, we synthesized water-tolerant YVO4:Er+3; Yb+3@ Nd+3 core/shell nanoparticles (average size 20 nm) with strong UC luminescence at a biocompatible excitation wavelength for optical temperature sensing where overheating in water is minimized. (C) 2017 Optical Society of America.
机译:发光温度是使用在生物组织中具有纳米级政题的上转化纳米颗粒(UCNP)的有希望的方法。 UCNP优于常规荧光标记物,从其组织中的自发荧光抑制和深度成像受益于常规荧光标记物。然而,它们仍然受到差的水溶解度和弱的上转换发光强度,特别是在小的粒度下的限制。最近,YVO4:ER + 3; YB + 3纳米颗粒在单粒度水平和生物模型中的高对比度成像中显示出高效率上转化(UC)发光。通常,980nm激光触发UCNP中的UC过程,其与在生物样品中显着的水分子的最大吸收重叠,导致生物组织过热并可能损坏。有趣的是,钕(ND + 3)在水低吸收带(808nm)处具有大的吸收横截面,这可以克服过热问题。在这封信中,我们将ND + 3作为新的近红外吸收器和UC敏化剂引入YVO4:ER + 3; Yb + 3纳米颗粒在核心/壳结构中,以确保新的UC敏化剂(Nd + 3)之间的连续能量转移到上变频器(ER + 3)。最后,我们合成了耐水YVO4:ER + 3; Yb + 3 @ Nd + 3核/壳纳米颗粒(平均大小20nm),具有强UC发光的生物相容性激发波长,用于在水中过热的光学温度感测。 (c)2017年光学学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号