...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Modeling biofilms with dual extracellular electron transfer mechanisms
【24h】

Modeling biofilms with dual extracellular electron transfer mechanisms

机译:用双细胞外电子传递机制建模生物膜

获取原文
获取原文并翻译 | 示例
           

摘要

Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found in the literature. Our simulation results show that (1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; (2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; (3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and (4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms.
机译:电化学活性生物膜具有独特的呼吸形式,其中它们利用固体外材料作为其代谢的末端电子受体。目前,已经鉴定了两种主要机制用于远程细胞外电子转移(EET):扩散和基于导电的机制。文献中的证据表明,一些生物膜,特别是Shewanella oneidensis,为这两种机制产生必要的组件。在该研究中,提出了一种泛型模型,其包含扩散和基于传导的机制,并允许电化学活性生物膜同时使用。使用在文献中发现的实验生成数据,将该模型应用于S.Inidensis和Geobacter Sulfurreducens生物膜。我们的仿真结果表明,(1)具有可用的两种机制的生物膜,特别是如果它们可以相互作用,则可以使用只能使用单一机制的生物膜具有代谢优势; (2)G.硫化琥珀炔的厚度可能不受电导率的限制; (3)精确的内部血管扩散系数值对于当前的产生预测至关重要; (4)本地生物膜电位和氧化还原电位是两个不同的参数,并且不能被认为具有相同的值。最后,我们确定基于我们模型的模拟循环和正方形伏安法目前无法确定生物膜中的细胞外电子转移机制的特定百分比。开发的模型将成为设计实验以解释EET机制的关键工具。

著录项

  • 来源
  • 作者单位

    The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University 118 Dana Hall Spokane St P.O. Box 642710 Pullman WA 99164-2710 USA.;

    The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University 118 Dana Hall Spokane St P.O. Box 642710 Pullman WA 99164-2710 USA.;

    Fundamental and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号